КОЛОДКИ МНОГОРУЧЬЕВЫЕ ДЛЯ КРЕПЛЕНИЯ ТРУБОПРОВОДОВ

Технические требования и методы испытаний

ISO 7661:1984
Aerospace — Fluid systems — Clamp blocks for tube lines having axial alignment — Design standard and qualification testing (IDT)

Издanie официальное
ГОСТ Р ИСО 7661—2010

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием «Научно-исследовательский институт стандартизации и унификации» («НИИСУ») на основе собственного аутентичного перевода на русский язык стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 323 «Авиационная техника»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 30 ноября 2010 г. № 744-ст

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5 (3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных национальных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении ДА

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2011

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии
1 Область применения

Настоящий стандарт распространяется на колодки многоручьевые (далее — колодки), предназначенные для крепления трубопроводов с параллельным расположением (осевой центровкой), с или без электрического заземления, используемых для различных целей в жидкостных системах самолетов и вертолетов гражданского назначения, и устанавливает конструкцию и методы квалификационных испытаний.

Примечание — Номинальные размеры наружных диаметров трубопроводов — по ИСО 2964.

2 Нормативные ссылки

ИСО/ТР 2685 Авиация. Методика испытаний на воздействие внешних условий для бортового оборудования. Огнестойкость в обозначенных зонах пожара (ISO/TR 2685, Aircraft — Environmental test procedure for airborne equipment — Resistance to fire in designated fire zones)

ИСО 2964 Авиация и космонавтика. Трубы. Наружные диаметры и толщина. Метрическая серия (ISO 2964, Aerospace — Tubing outside diameters and thicknesses — Metric dimensions)

ИСО 5855 Авиация и космонавтика. Резьбы MJ

Часть 1. Общие требования

Часть 2. Предельные размеры болтов и гаек

(ISO 5855, Aerospace construction-MJ threads

Part 1: Basic profile

Part 2: Dimensions for bolts and nuts)

ИСО 6771 Авиация и космонавтика. Гидравлические системы и компоненты. Классификация давления и температуры (ISO 6771, Aerospace — Fluid systems and components — Pressure and temperature classifications)

ИСО 7137 Авиация. Внешние воздействующие факторы и методы испытаний бортового оборудования (ISO 7137, Aircraft — Environmental conditions and test procedures for airborne equipment)

3 Термины и определения

В настоящем стандарте применяны следующие термины с соответствующими определениями:

3.1 осевая центровка (axial alignment): Колодку называют с «осевой центровкой», когда оси закрепляемых трубопроводов расположены в одной и той же плоскости.

3.2 колодка для трубопроводов (clamp block for tubing): Устройство, используемое на самолетах и вертолетах гражданской авиации для крепления трубопроводов, размеры которых могут быть различны и которые могут быть изготовлены из различных материалов.
3.2.1 Моноблочная колодка (monobloc clamp block): Колодка для трубопроводов, состоящая из двух моноблочных деталей (см. рисунок 1).
3.2.2 Модульная колодка (modular clamp block): Колодка для трубопроводов, состоящая из съемных деталей, со вставками или без вставок (см. рисунок 2).
3.3 Колодка с промежуточным крепежным отверстием (clamp block with intermediate mounting hole): Моноблочная или модульная колодка с одним или несколькими промежуточными отверстиями (см. рисунок 3).
3.4 Съемная деталь (removable part): Деталь модульной колодки, которая обеспечивает стандартный зазор между двумя съемными трубопроводами.
3.5 Вставка (insert): Деталь, которая может быть установлена между двумя съемными деталями для обеспечения требуемого расстояния (стандартизированного или нет) между осями трубопроводов.

Рисунок 1 — Моноблочная колодка

Рисунок 2 — Модульная колодка
4 Классификация колодок

Колодки подразделяют на три класса A, B и C по максимальной высоте колодки и в зависимости от диапазона наружных диаметров трубопроводов (см. таблицу 1):
- класс A: Наружный диаметр трубопроводов от 4 до 12 мм;
- класс B: Наружный диаметр трубопроводов от 4 до 20 мм;
- класс C: Наружный диаметр трубопроводов от 4 до 32 мм.

5 Размеры колодок

5.1 Максимальная высота

Максимальная высота колодки H для каждого класса колодок и для каждого наружного диаметра трубопровода приведена в таблице 1.

<table>
<thead>
<tr>
<th>Класс колодки</th>
<th>Наружный диаметр трубопровода</th>
<th>Максимальная высота колодки H</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>A</td>
<td>27,0</td>
<td>27,0</td>
</tr>
<tr>
<td>B</td>
<td>35,0</td>
<td>35,0</td>
</tr>
<tr>
<td>C</td>
<td>48,5</td>
<td>48,5</td>
</tr>
</tbody>
</table>

5.2 Номинальные размеры

Номинальный радиус колодки R для каждого наружного диаметра трубопровода приведен в таблице 2.

<table>
<thead>
<tr>
<th>Наружный диаметр трубопровода</th>
<th>Номинальный радиус колодки R</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2,0</td>
</tr>
<tr>
<td>5</td>
<td>2,5</td>
</tr>
<tr>
<td>6</td>
<td>3,0</td>
</tr>
<tr>
<td>8</td>
<td>4,0</td>
</tr>
<tr>
<td>10</td>
<td>5,0</td>
</tr>
<tr>
<td>12</td>
<td>6,0</td>
</tr>
<tr>
<td>14</td>
<td>7,0</td>
</tr>
<tr>
<td>16</td>
<td>8,0</td>
</tr>
<tr>
<td>20</td>
<td>10,0</td>
</tr>
<tr>
<td>25</td>
<td>12,5</td>
</tr>
<tr>
<td>32</td>
<td>16,0</td>
</tr>
</tbody>
</table>
5.3 Ширина съемных деталей
Съемные детали для модульных колодок исполняются в двух моделях, которые стандартизированы следующим образом:
- модель 1 устанавливает зазор 3 мм между смежными трубопроводами;
- модель 2 устанавливает зазор 5 мм между смежными трубопроводами.

Примечание — Модель 2 может состоять из съемной детали и вставки.

Значение ширины L (L_1 — для модели 1 и L_2 — для модели 2) съемных деталей для модульных колодок для каждого наружного диаметра трубопровода приведено в таблице 3.

<table>
<thead>
<tr>
<th>Наружный диаметр трубопровода</th>
<th>Ширина съемных деталей</th>
<th>В миллиметрах</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Модель 1</td>
<td>Модель 2</td>
</tr>
<tr>
<td></td>
<td>$L_{1,-0.1}^0$</td>
<td>$L_{2,-0.1}^0$</td>
</tr>
<tr>
<td>4</td>
<td>—</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>17</td>
<td>19</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>23</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>28</td>
<td>30</td>
</tr>
<tr>
<td>32</td>
<td>35</td>
<td>37</td>
</tr>
</tbody>
</table>

5.4 Расстояние между болтами колодок

5.4.1 Модульная колодка
Расстояние между болтами модульных колодок равно сумме значений ширины съемных деталей (см. рисунок 2 и таблицу 3) и ширины вставок (если они используются), увеличенной на 10 мм.

5.4.2 Моноблочная колодка
Расстояние между болтами моноблочных колодок эквивалентно размеру между болтами модульной колодки, предназначенной для крепления аналогичных трубопроводов.

6 Температурные условия
Колодки подразделяют на три типа в зависимости от диапазона рабочих температур в соответствии с ИСО 6771:
- Тип I: от $-55 ^\circ C$ до $+70 ^\circ C$;
- Тип II: от $-55 ^\circ C$ до $+135 ^\circ C$;
- Тип III: от $-55 ^\circ C$ до $+200 ^\circ C$.
7 Квалификационные испытания

7.1 Электрические испытания (для колодок с электрическим заземлением)

7.1.1 Измерение переходного сопротивления

Измеряют падение напряжения между одним из крепежных винтов колодки и каждым испытываемым трубопроводом, используя источник питания постоянного тока от 1 до 4 А и милливольтметр.

Перед осуществлением любых испытаний переходное сопротивление должно быть не более 150 мОм. Для обеспечения переходного сопротивления с более низким значением следует рассмотреть процедуру изменения электропроводности.

7.2 Механические испытания

7.2.1 Испытания на скольжение (трение) при повышенных температурах

Примечание — Испытания не проводят для колодок, если нет возможности закрепить трубопровод.

7.2.1.1 Образцы

Для этих испытаний должны быть обеспечены три образца, состоящие из колодок для трех параллельных частей трубопроводов длиной 50 мм, из одного и того же материала (алюминиевого сплава, нержавеющей стали или титана) и с одним и тем же диаметром: 4, 12 и 20 мм.

7.2.1.2 Испытательная установка

Устройство, соответствующее рисунку 4, должно обеспечивать скольжение трубопровода в колодке со смещением 6 мм (т. е. ± 3 мм). Частота смещения должна быть 1 Гц (цикл/c).

Рисунок 4 — Установка для испытаний на скольжение

7.2.1.3 Условия испытаний

Испытания на скольжение должны осуществляться при следующих температурах:

- \((55 \pm 3)°C\);
- \((110 \pm 3)°C\);
- \((160 \pm 3)°C\).

Крутящий момент затяжки крепежного винта должен быть 2 Н·м.

Количество циклов, осуществленных при таких условиях, должно быть 50 000.

7.2.1.4 Исходные измерения

Перед установкой каждого трубопровода в устройстве проводят следующие измерения при комнатной температуре:

a) усилие трения \(F\) для каждого трубопровода: \(F\) от 15 до 30 Н в соответствии с диапазоном рабочих температур колодки, материалом и наружным диаметром трубопровода;

b) переходное сопротивление (см. 7.1.1).

* Измерение должно быть осуществлено до и после механических и климатических испытаний.
ГОСТ Р ИСО 7661—2010

7.2.1.5 Окончательные измерения
После снятия каждого трубопровода с испытательного устройства проводят следующие оконча-
tельные измерения при комнатной температуре:

a) измерение усилия трения для образцов трубопроводов;
b) измерение переходного сопротивления (см. 7.1.1): измерение переходного сопротивления дол-
жно осуществляться до снятия образцов трубопроводов;

c) осмотр и измерение площадей контакта образцов трубопроводов и канавок колодок, отметок
износа после снятия колодки.

7.2.1.6 Критерии приемки
После испытаний должны быть соблюдены следующие требования:

a) усилие трения для каждого трубопровода должно оставаться не менее 5 Н;
b) переходное сопротивление должно оставаться не более 150 мОм;

c) величины износа на трубопроводах после испытаний на скольжение не должны превышать сле-
dующие значения:
- трубопроводы из алюминиевого сплава — 40 мкм;
- трубопроводы из нержавеющей стали — 15 мкм;
- трубопроводы из титана — 15 мкм;

d) независимо от материала допустимый износ на поверхности трубопроводов должен соот-
ветствовать следующим значениям:
- наружный диаметр трубопроводов от 4 до 10 мм — износ не более 0,05 мм относительно номи-
нального диаметра;
- наружный диаметр трубопроводов от 12 до 32 мм — износ не более 0,08 мм относительно номи-
нального диаметра.

7.2.2 Испытания на скольжение (трение), скомбинированные с загрязнением
7.2.2.1 Образцы
Для этих испытаний должны быть обеспечены три образца, состоящие из колодки для трех тру-
бопроводов длиной 50 мм, из одного и того же материала (алюминиевый сплав, нержавеющая сталь или
титан) и с одним и тем же диаметром: 4, 12 и 20 мм.

7.2.2.2 Цель испытаний
Испытания рассчитаны на определение последствий для функционирования колодки и трубопро-
вода при воздействии определенных жидкостей, используемых в самолетах и вертолетах гражданской
 aviации, в атмосфере песка и пыли с определенной концентрацией насыщения.

Для испытаний рассматриваются следующие жидкости:
- топливо;
- гидравлическая жидкость на основе эфира фосфорной кислоты;
- эфир креозиновой кислоты;
- протиообеднительная жидкость;
- очищающая жидкость;
- жидкость для тушения пожара.

7.2.2.3 Метод испытаний
Собирают колодку и трубопровод, как указано в 7.2.1. Наносят загрязнение на внешнюю
 поверхность трубопровода в зоне колодки кистью или напылением. Устанавливают колодку с трубопро-
водами в испытательную камеру для осуществления испытаний в атмосфере песка и пыли.

Колодку с трубопроводами подвергают испытаниям на воздействие песка и пыли в соответствии с
ISO 7137.

7.2.2.4 Критерии приемки
Критериями приемки являются следующие требования:

a) усилие трения для каждого трубопровода должно оставаться не менее 5 Н;
b) переходное сопротивление должно оставаться не более 150 мОм;

c) глубина отметок износа на трубопроводах должна быть не более 5 % толщины трубопровода из
нержавеющей стали и титана и не более 10 % толщины трубопровода из легких сплавов;

d) допустимый износ трубопроводов: уменьшение толщины должно быть не более 10 % мини-
мальной толщины трубопроводов, замеренной до испытаний.

7.2.3 Вибрационные испытания
7.2.3.1 Метод испытаний
Жестко прикрепляют к испытательной установке узел, включающий в себя две колодки на расстоя-
нии 50 см друг от друга, с тремя трубопроводами длиной 1 м с одним и тем же диаметром и из одного и того
же материала (алюминиевый сплав, нержавеющая сталь или титан). Затем подвергают этот же узел после
измнением вибрационных испытаний в соответствии с ГОСТ 7132 (см. кривую на рисунке 8—6 в под-
пункте 8.4 публикации EUROCAE ED-14A/RTCA DO-160A).

7.2.3.2 Критерии приемки являются следующие требования:

а) не должно быть повреждений колодки (растяжки, повреждения или значительного износа) и
расшатывания затяжек винтов;
б) усилие натяжения для каждой трубопровода должно оставаться не менее 5 Н;
в) переходное сопротивление должно оставаться не более 150 мОм;
г) глубина отметок износа на трубопроводах должна быть не более 5% толщины трубопровода из
нержавеющей стали и титана и не более 10% толщины трубопровода из легких сплавов;
д) допустимый износ трубопроводов: уменьшение толщины должно быть не более 10% мини-
мальной толщины трубопроводов, замеренной до испытаний.

7.3 Климатические испытания

7.3.1 Испытания при низкой температуре
Колодку с трубопроводами подвергают испытаниям при низкой температуре (при минимальной
температурах, определенных в разделе 6) в соответствии с ГОСТ 7137.

7.3.2 Испытания при высокой температуре
Колодку с трубопроводами подвергают испытаниям при высокой температуре (при максимальной
температурах, определенных в разделе 6) в соответствии с ГОСТ 7137.

7.3.3 Испытания соляным туманом
7.3.3.1 Первоначальные измерения
Измеряют переходное сопротивление (см. 7.1.1).

7.3.3.2 Испытания
Колодку, представленную для этих испытаний, подвергают испытаниям соляным туманом в соот-
ветствии с ГОСТ 7137.

7.3.3.3 Окончательные измерения
Проверяют внешний вид и измеряют переходное сопротивление (см. 7.1.1).

7.3.4 Критерии приемки
Критериями приемки являются следующие требования:

а) коррозия не должна оказывать неблагоприятного воздействия на любой из элементов колодки;
б) переходное сопротивление должно быть не более 150 мОм.

П р и м е ч а н и я
1 Климатические испытания, описанные в 7.3.1—7.3.3, — статические испытания.
2 Если материалы, из которых изготовлена колодка, ранее были признаны удовлетворительными при испы-
таниях соляным туманом в соответствии с ГОСТ 7137, то колодка может быть квалифицирована по аналогии.

7.4 Испытания на огнестойкость

7.4.1 Испытательная установка
Испытательная установка должна включать в себя:

а) камеру со стеклянным окном для наблюдения за испытательными образцами. Камера дол-
жна быть оснащена регулируемыми опорами (в вертикальном направлении) для размещения образцов;
б) газовую горелку с номинальным внутренним диаметром 9,5 мм;
в) термопару для измерения температуры воспламенения.

7.4.2 Процедура испытаний
Устанавливают колодку внутрь камеры вертикально самой нижней частью на расстоянии 19 мм от
верхней части горелки. Затем размещают фасет пламени у самой нижней части так, что 1/3 пламени
контактировала с колодкой (см. рисунок 5).
Для обеспечения горелки пламени приблизительной высотой 38 мм горелку следует отрегулиро-
вать так, чтобы температура самой горячей точки составляла 843 °C.
Затем помещают хлопчатобумажную салфетку со сторонами 100 мм под образцом на расстоянии
300 мм.
Колодку подвергают воздействию пламени в течение 12 с.
7.4.3 Критерии приемки
Критериями приемки являются следующие требования:
а) горение материала колодки должно продолжаться не более 12 с (после удаления источника нагрева) и не должно сопровождаться выделением вредного дыма;
b) частицы или капли образца должны продолжать гореть не более 5 с и не должны вызывать воспламенения хлопчатобумажной салфетки.

Примечания
1 Если колодка устанавливается в пожароопасной зоне и если специфические условия ее использования требуют огнестойкости, эта колодка должна быть подвергнута тем же самым испытаниям на огнестойкость, что и закрепленные трубопроводы (см. ИСО/ТС 2685).
2 В некоторых случаях выделение токсичного газа и дыма могут происходить при пожаре. Это может вызвать необходимость проводить дополнительные испытания для проверки материалов колодки на токсичность и образование дыма.
Таблица ДА.1

<table>
<thead>
<tr>
<th>Обозначение ссылочного международного стандарта</th>
<th>Степень соответствия</th>
<th>Обозначение соответствующего национального стандарта</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИСО 2685:1998</td>
<td>—</td>
<td>*</td>
</tr>
<tr>
<td>ИСО 2964:1985</td>
<td>—</td>
<td>*</td>
</tr>
<tr>
<td>ИСО 5855-1:1999</td>
<td>—</td>
<td>*</td>
</tr>
<tr>
<td>ИСО 6771:2007</td>
<td>—</td>
<td>*</td>
</tr>
<tr>
<td>ИСО 7137:1995</td>
<td>—</td>
<td>*</td>
</tr>
</tbody>
</table>

* Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.