ИЗДЕЛИЯ МЕДИЦИНСКИЕ
ОЦЕНКА БИОЛОГИЧЕСКОГО ДЕЙСТВИЯ
МЕДИЦИНСКИХ ИЗДЕЛИЙ
Часть 7
Остаточное содержание этиленоксида
после стерилизации

ISO 10993-7: 1995
Biological evaluation of medical devices — Part 7: Ethylene oxide sterilization
residuals
(IDT)

Издание официальное
ГОСТ Р ИСО 10993-7—2009

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0 — 2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Институт медико-биологических исследований и технологий» (АНО «ИМБИИТ»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 422 «Оценка биологического действия медицинских изделий»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 2 декабря 2009 г. № 531-ст

5 ВЗАМЕН ГОСТ Р ИСО 10993.7–99

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2010

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии
Содержание

1 Область применения ... 1
2 Нормативные ссылки .. 1
3 Термины и определения ... 1
4 Основные требования ... 2
 4.1 Общие положения .. 2
 4.2 Категории изделий по продолжительности контакта 2
 4.3 Допустимые пределы .. 2
 4.3.1 Изделия постоянного контакта 2
 4.3.2 Изделия длительного контакта 3
 4.3.3 Изделия кратковременного контакта 3
 4.3.4 Особые случаи .. 3
 4.4 Определение остаточного содержания ЭО и ЭХГ 3
 4.4.1 Вопросы безопасности .. 3
 4.4.2 Определение остаточного содержания 4
 4.4.3 Отбор образцов .. 4
 4.4.4 Выбор объема модельной среды 5
 4.4.5 Время и условия экстракции 5
 4.4.6 Экстракция из изделий .. 5
 4.4.7 Результаты анализа и их интерпретация 7
5 Выпуск продукции .. 8
 5.1 Выпуск продукции без использования данных по кривым дегазации 8
 5.2 Методика выпуска продукции с использованием кривых дегазации 8
Приложение А (обязательное) Оценка хроматограмм, полученных методом газовой хроматографии 10
Приложение В (обязательное) Газохроматографическое определение ЭО и ЭХГ 13
Приложение С (справочное) Факторы, влияющие на содержание остаточных веществ в изделии 21
Приложение Д (справочное) Условия экстракции для определения остаточного содержания ЭО 22
Приложение Е (справочное) Логическое обоснование введения предельных значений 23
Приложение F (справочное) Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам 34
Библиография .. 35
Введение

Соблюдение положений стандартов серии ИСО 10993 «Оценка биологического действия медицинских изделий» позволит обеспечить системный подход к исследованию биологического действия медицинских изделий.

Целью этих стандартов не является безусловное закрепление единообразных методов исследований и испытаний за группами однородных медицинских изделий в соответствии с принятой классификацией их по виду и длительности контакта с организмом человека. Поэтому планирование и проведение исследований и испытаний должны осуществлять специалисты, имеющие соответствующую подготовку и опыт в области санитарно-химической, токсикологической и биологической оценок медицинских изделий.

Стандарты серии ИСО 10993 являются руководящими документами для прогнозирования и исследования биологического действия медицинских изделий на стадии выбора материалов, предназначенных для их изготовления, а также для исследований готовых изделий.

В серию ИСО 10993 входят следующие части под общим названием «Оценка биологического действия медицинских изделий»:

- Часть 1 — Оценка и исследования;
- Часть 2 — Требования к обращению с животными;
- Часть 3 — Исследования генотоксичности, канцерогенности и токсического действия на репродуктивную функцию;
- Часть 4 — Исследование изделий, взаимодействующих с кровью;
- Часть 5 — Исследования на цитотоксичность: методы in vitro;
- Часть 6 — Исследование местного действия после имплантации;
- Часть 7 — Остаточное содержание этиленоксидида после стерилизации;
- Часть 9 — Основные принципы идентификации и количественного определения потенциальных продуктов деградации;
- Часть 10 — Исследования раздражающего и сенсибилизирующего действия;
- Часть 11 — Исследование общетоксического действия;
- Часть 12 — Приготовление проб и стандартные образцы;
- Часть 13 — Идентификация и количественное определение продуктов деградации полимерных медицинских изделий;
- Часть 14 — Идентификация и количественное определение продуктов деградации изделий из керамики;
- Часть 15 — Идентификация и количественное определение продуктов деградации изделий из металлов и сплавов;
- Часть 16 — Моделирование и исследование токсикокинетики продуктов деградации и вымывания;
- Часть 17 — Установление пороговых значений для вымываемых веществ;
- Часть 18 — Исследование химических свойств материалов;
- Часть 19 — Исследования физико-химических, морфологических и топографических свойств материалов;
- Часть 20 — Принципы и методы исследования иммунотоксического действия медицинских изделий.

Настоящий стандарт обосновывает необходимость проведения контроля содержания остаточных количеств этиленоксидида (ЭО) и этиленхлорида (ЭХ) после стерилизации в изделиях медицинского назначения в связи с их токсическим действием в определенных концентрациях. В стандарте обращается особое внимание на биологические реакции, включающие раздражение, повреждение органов, мутагенность и канцерогенность у человека и животных, влияние на репродуктивную функцию у животных.

Методы исследования, изложенные в настоящем стандарте, взяты из международных, национальных стандартов, директив и нормативов.

Допускается применение других методов, обеспечивающих оценку биологического действия медицинских изделий в соответствии с требованиями международных стандартов.
ИЗДЕЛИЯ МЕДИЦИНСКИЕ
ОЦЕНКА БИОЛОГИЧЕСКОГО ДЕЙСТВИЯ МЕДИЦИНСКИХ ИЗДЕЛИЙ
Часть 7
Остаточное содержание этиленоксида после стерилизации

Medical devices. Biological evaluation of medical devices.
Part 7. Ethylene oxide sterilization residuals

Дата введения — 2010 — 09 — 01

1 Область применения

Настоящий стандарт устанавливает допустимые предельные значения для остаточного количества этиленоксида (ЭО) и этиленхлоридрина (ЭХГ) в медицинских изделиях (далее — изделия), стерилизованных ЭО, методы определения ЭО и ЭХГ и требования, в соответствии с которыми осуществляется выпуск изделий.

Требования настоящего стандарта являются рекомендуемыми.

Стандарт не распространяется на изделия, стерилизованные ЭО, но не имеющие контакта с пациентом (например, диагностические устройства, использующиеся in vitro).

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ИСО 10993-1:2003 Оценка биологического действия медицинских изделий. Часть 1. Оценка и исследование
ИСО 10993-3:2003 Оценка биологического действия медицинских изделий. Часть 3. Исследования генотоксичности, канцерогенности и токсического действия на репродуктивную функцию

ИСО 10993-10:2002 Оценка биологического действия медицинских изделий. Часть 10. Исследования раздражающего и сенсибилизирующего действия

3 Термины и определения

В настоящем стандарте применены термины по ИСО 10993-1, а также следующие термины с соответствующими определениями:

3.1 экстракция, моделирующая условия применения: Экстракция с использованием воды в качестве модельной среды, моделирующая реальные условия применения, выполняемая в соответствии с требованиями настоящего стандарта и позволяющая оценить остаточные количества ЭО и ЭХГ, воздействующие на пациента или пользователя изделий в процессе их применения по назначению.

Примечание — При оценке в аналитической лаборатории следует обратить особое внимание на то, чтобы экстракция данного вида проводилась в условиях, обеспечивающих наиболее соответствствие предполагаемому способу применения. Моделирование условий применения изделия в медицинской практике должно проводиться с учетом максимально возможного времени воздействия, принимая во внимание температуру воздействия и ткани, контактирующие с данным изделием.

3.2 исчерпывающая экстракция: Экстракция, выполняемая до тех пор, пока количество ЭО и ЭХГ в последующей порции модельной среды не будет составлять менее 10 % определенного при первой экстракции или пока не будет аналитически значимого увеличения в определяемых совокупных остаточных уровнях.
ГОСТ Р ИСО 10993-7—2009

П р и м е ч а н и е — Если невозможно показать исчерпывающий характер при оценке остаточных количеств, определение исчерпывающей экстракции принимается в указанном выше виде.

4 Основные требования

П р и м е ч а н и е — Информация по источникам ограничений в настоящем стандарте так же, как и другая важная дополнительная информация, и руководство к использованию настоящего стандарта приведены в приложениях.

4.1 Общие положения

В настоящем разделе устанавливаются максимально допустимые уровни остаточного содержания ЭО для отдельных изделий, простерлизованных ЭО. Регламентируется также максимальное содержание ЭХГ в случаях, когда его обнаруживают в медицинских изделиях, стериллизованных ЭО.

Для содержания этиленгликола (ЭГ) никакие ограничения не устанавливают, поскольку оценка степени риска показывает, что, когда остаточные количества ЭО контролируют согласно требованиям настоящего стандарта, маловероятно присутствие биологически значимых остаточных количеств ЭГ (см. Д.1, приложение D).

Требования, изложенные в настоящем стандарте, являются дополнением к программам биологических исследований, представленным в ИСО 10993-1. При применении изделий, стериллизованных ЭО, следует обратить особое внимание на ИСО 10993-3 и ИСО 10993-10. При выполнении требований ИСО 10993-1 следует учитывать остаточные количества ЭО в момент выпуска продукции для каждого конкретного изделия.

Результаты биологической оценки изделия могут обусловить более жесткие, чем приведенные в 4.3 требования, предназначенные для учета обычных реакций. Например, при биологической оценке раздражающее действие должно рассматриваться для всех изделий, в частности для изделий малых размеров (см. Д.2, приложение D). Настоящий стандарт не учитывает возможности острых локальных реакций, для которых могут быть получены неувоверительные данные. Следует обратить внимание на возможность таких реакций, особенно для небольших изделий, и учитывать концентрацию ЭО на единицу площади поверхности.

4.2 Категории изделий по продолжительности контакта

Для установления максимальной суточной дозы ЭО и ЭХГ, которая может выдерживаться из изделия и воздействовать на пациента, изделие в зависимости от продолжительности контакта относят к определенной категории.

Согласно ИСО 10993-1 изделия однократного, многократного или непрерывного применения по продолжительности контакта относят к одной из трех категорий:

A — изделия кратковременного контакта продолжительностью не более 24 ч;
B — изделия длительного контакта продолжительностью свыше 24 ч, но не более 30 сут;
С — изделия постоянного контакта продолжительностью свыше 30 сут.

П р и м е ч а н и я

1 Если материал или изделие могут быть отнесены более чем к одной категории по продолжительности контакта, следует выбирать более жесткие условия исследований. При многократном применении изделия для принятия решения, к какой категории следует отнести изделие, учитывают возможный кумулятивный эффект, принимая во внимание период времени между повторными применениями.

2 В настоящем стандарте термин «многократное применение» означает применение одного и того же изделия более одного раза.

4.3 Допустимые пределы

Для каждого изделия максимально допустимые дозы ЭО и ЭХГ, которые воздействуют на пациента, не должны превышать значений, приведенных ниже для соответствующей категории.

П р и м е ч а н и е — Предельные значения для изделий постоянного и длительного контакта выражаются в максимальной среднесуточной дозе. Для изделий, имеющих постоянный контакт, введены ограничения для первых 24 ч и для первых 30 сут, а для изделий длительного контакта — для первых 24 ч. Эти ограничения устанавливают предельные значения ЭО и ЭХГ, которые могут воздействовать на пациента в раннем периоде времени. Методика, которую использовали для установки допустимых предельных значений, описана в D.2.

4.3.1 Изделия постоянного контакта

Среднесуточная доза ЭО для пациента должна быть не более 0,1 мг. Дополнительные требования: максимальная доза ЭO должна быть не более:
20 мг — в течение первых 24 ч;
60 мг — в течение первых 30 сут;
2,5 г — в течение жизни.
Среднесуточная доза ЭХГ для пациента должна быть не более 2 мг. Дополнительные требования: максимальная доза ЭХГ должна быть не более:
12 мг — в течение первых 24 ч;
60 мг — в течение первых 30 сут;
50 г — в течение жизни.
4.3.2 Изделия длительного контакта
Среднесуточная доза ЭО для пациента должна быть не более 2 мг. Дополнительные требования: максимальная доза ЭО должна быть не более:
20 мг — в течение первых 24 ч;
60 мг — в течение первых 30 сут.
Среднесуточная доза ЭХГ должна быть не более:
12 мг — в течение первых 24 ч;
60 мг — в течение первых 30 сут.
4.3.3 Изделия кратковременного контакта
Среднесуточная доза ЭО для пациента должна быть не более 20 мг.
Среднесуточная доза ЭХГ для пациента не должна превышать 12 мг.
Примечание — Одновременное использование нескольких изделий или использование изделий для новорожденных может привести к дополнительному воздействию, как указано в Е.2.1.1, приложение Е.
4.3.4 Особые случаи
Для систем, состоящих из нескольких изделий, предельные дозы должны рассчитываться отдельно для каждого изделия.
Остаточное содержание ЭО в интраокулярных линзах должно быть не более 0,5 мкг ЭО на линзу в сутки и 1,25 мкг на линзу.
Для оксигенаторов и сепараторов крови среднесуточная доза ЭО для пациента не должна превышать 60 мг.
Для изделий, предназначенных для экстракорпоральной очистки крови, используют предельные содержания ЭО и ЭХГ, установленные для изделий длительного и кратковременного контакта, но допустимая доза ЭО в течение всей жизни может быть превышена.
Примечание — Рациональный подход для определения предельного содержания ЭО для некоторых изделий, не соответствующих общим требованиям, представлен в Е.2.1.3, приложение Е.
4.4 Определение остаточного содержания ЭО и ЭХГ
Метод определения остаточного содержания ЭО и ЭХГ для проверки соответствия требованиям, изложенным в 4.3, заключается в экстрагировании остаточных количеств из образцов, количественной оценке, анализе и интерпретации полученных данных.
4.4.1 Вопросы безопасности
Аналитики и другие лица, работающие с образцами, должны выполнять все работы, связанные с использованием химических реагентов и растворителей, необходимых для данных методов, под вытяжным шкафом, в соответствующей защитной одежде, а перед использованием каждого химического реактива ознакомиться с информацией по безопасности материалов.
4.4.1.1 ЭО
Это воспламеняющийся и высокоактивный газ, оказывающий раздражающее действие на поверхность тела. Обладает мутагенным действием, проявляет фетотоксические и тератогенные свойства и может повреждать многие органы организма человека. При изучении канцерогенных свойств ингаляционное воздействие на животных вызывало неопластические изменения нескольких типов, включая лейкемию, опухоли мозга и мочевой железы, в то время как прием внутрь и внутривенное введение вызывали опухоли лишь в месте контакта.
4.4.1.2 ЭХГ
Это воспламеняющаяся жидкость, которая оказывает раздражающее действие на поверхность тела, вызывает острую токсичность и легко всасывается в кожу в количествах, оказывающих токсическое дей-
ствие. Обладает слабым мутагенным действием, может вызывать фетотоксичные и тератогенные изменения, может повреждать различные органы, включая легкие, почки и сердечно-сосудистую систему. Исследования канцерогенности на животных дали отрицательные результаты.

4.4.2 Определение остаточного содержания
Для определения остаточных количеств ЭО и, при необходимости, ЭХГ, воздействующих на пациента, необходимо использовать узаконенные методики экстракции и анализа.

П р и м е ч а н и е — Если по результатам анализов, проведенных по методикам, представленным в В.5.2 и В.5.7, приложение В, ЭХГ не обнаружен, в дальнейшем его определение не требуется.

Методики, удовлетворяющие этим требованиям, представлены в приложении В. Допускается использование любого аналитического метода при условии, что он обоснован, то есть показано, что он удовлетворяет требованиям, изложенным в приложении A, и что он оценен арбитражными методами, представленными в приложении В.

При выборе пригодных методов экстракции (4.4.6) для количественного определения ЭО или, при необходимости, ЭХГ учитывайте дозу, воздействующую на пациента, для того, чтобы показать ее соответствие требованиям, приведенным в 4.3.

Если обосновано, что остаточное содержание ЭО и ЭХГ, определяемое методом исчерпывающей экстракции, соответствует требованиям 4.3, экстракцию, моделирующую условия применения в медицинской практике, не проводят. При применении исчерпывающей экстракции обращают особое внимание на предельные значения для первых 24 ч и 30 сут в соответствии с 4.3.

Известно много аналитических методов для определения остаточного содержания ЭО после стерилизации; их обзоры представлены в библиографии. Методы, для которых в результате межлабораторного изучения была проведена сравнительная оценка, выполненная высококвалифицированным персоналом с использованием современного оборудования, представлены в приложении В. Однако большое разнообразие материалов и конструкторских решений при создании медицинских изделий в ряде случаев может вызвать трудности в определении остаточного содержания ЭО и ЭХГ методами, приведенными в приложении В.

Прием любой аналитически значимый метод (т. е. обеспечивающий достоверность, точность, линейность, чувствительность и селективность) может быть использован при условии, что он обоснован. Приложение A содержит общие требования к выполнению методик, а методы, представленные в приложении В, могут быть использованы как арбитражные для оценки альтернативных методов.

4.4.3 Отбор образцов
4.4.3.1 Репрезентативные образцы
Образцы, которые предназначены для определения остаточного содержания ЭО и ЭХГ, должны быть отобраны таким образом, чтобы они в достаточной степени отражали свойства изделия в целом. При отборе образцов следует обратить внимание на ряд факторов, указанных в приложении C. Так как многие из этих факторов влияют не только на исходные уровни остаточных веществ во всех компонентах изделия, но и на скорость выделения этих веществ, их также необходимо учитывать, начиная с этапа производства и представления в лабораторию для проведения анализа.

Извлечение образцов изделий из обработанной партии сразу после окончания цикла стерилизации и отправка их в лабораторию, находящуюся удаленно от места стерилизации, а также хранение отобранных образцов в лаборатории для последующего анализа могут нарушить корреляцию в содержании остаточных количеств ЭО и ЭХГ в отобранных образцах и в оставшихся в обработанной партии. Более того, если образцы изделий из обработанной партии не могут быть отобраны и доставлены таким образом, чтобы эффект дегазации был незначительным, проводят исследование для установления соответствия дегазации анализируемых образцов и изделий из партии в разное время года.

4.4.3.2 Работа с образцами
Следует контролировать или уменьшить влияние лабораторных условий на скорость дегазации образцов, которые отобраны из партии изделий (см. С. 1.5, приложение С). При проведении анализа соблюдают меры безопасности для оператора и аналитика.

Образцы, предназначенные для анализа, должны оставаться в составе партии вплоть до дня проведения анализа. Время между изъятием образца из зоны контролируемой дегазации и началом экстракции должно быть сведено к минимуму.

Образцы герметично закрывают, перевозят и хранят в замороженном виде, если анализ откладывается. Образцы перевозят обложенными сухим льдом с привлечением службы круглогодичной доставки. Сухой лед оставляют в контейнере для перевозки во время транспортирования и при вскрытии упаковки.
В качестве альтернативы образцы для анализа отбирают непосредственно из партии изделий после соответствующей дегазации и сразу помещают в соответствующую жидкость для экстракции или емкость для анализа методом паровоздушной фазы, герметично закрывают и затем перевозят в лабораторию для анализа.

Образцы готовят в соответствии с инструкцией по предварительной подготовке, указанной на этикетке изделия.

Анализируемые образцы помещают в вытяжной шкаф и освобождают от упаковки. Экстракцию следует начинать по возможности сразу после того, как образец извлечен из упаковки или закончена предварительная подготовка.

4.4.3.3 Контрольный образец
Для того чтобы убедиться в отсутствии в веществе, составляющем основу образца, других компонентов со временем удерживания таким же, как и определяемые остаточные продукты, необходимо оценить контрольный образец, не подвергавшийся стерилизации, путем экстракции его с использованием тех же процедур, что и для образцов, стерилизованных ЭО. При наличии материалов, экстрагируемых из такого контрольного образца, для которых время удерживания совпадает или близко к временем удерживания определяемых веществ, изменяют условия хроматографирования таким образом, чтобы отделить мешающие пики от анализируемого пика, или используют другую аналитическую методику.

4.4.4 Выбор объема модельной среды
Объем модельной среды, используемой для извлечения остаточных количеств определяемых веществ из изделий или их представительных частей, должен быть таким, чтобы обеспечить максимальную эффективность экстракции при достаточной чувствительности определения анализируемых веществ в экстракте. Таким образом, материал и размер образца изделия обусловливают оптимальный объем модельной среды. Соотношение массы образца/объем модельной среды для различных изделий обычно варьируется от 1:2 до 1:10 (т. е. 1 г в 2 мл и 1 г в 10 мл). Для изделий, изготовленных из материалов с высокими поглотительными свойствами, или для тех, экстракция остаточных количеств из которых проводится методом заполнения, может потребоваться соотношение масса образца/объем модельной среды с большим содержанием последней составляющей. В любом случае выбор соотношения масса образца/объем модельной среды не должен приводить к уменьшению чувствительности определения.

4.4.5 Время и условия экстракции
Задача экстракции из изделий состоит в извлечении максимального количества вредных веществ, которые могут оказать воздействие на пациента в процессе применения изделия: выход за сутки — для изделий кратковременного контакта, выход за сутки и за месяц — для изделий длительного контакта, выход за сутки, за месяц и на протяжении жизни — для изделий постоянного контакта. Как указано в приложении D, исчерпывающая экстракция, описанная ниже, является полезным альтернативным методом для оценки изделий постоянного контакта, если учтены ограничения для более короткого периода применения.

4.4.6 Экстракция из изделий
Существуют два основных метода экстракции, которые используют для определения остаточного содержания ЭО после стерилизации: экстракция, моделирующая условия применения в медицинской практике, являющаяся эталонным методом, и исчерпывающая экстракция, которая в ряде случаев является приемлемым альтернативным методом. Выбор метода экстракции должен быть основан на предполагаемом способе применения изделия.

В приложении D приведены примеры предложенных методов экстракции.

Чтобы не занимать реальные значения остаточных количеств вещества, выбранный метод экстракции должен учитывать предполагаемый способ применения изделия с учетом максимального воздействия на пациента.

Температуру и время экстракции выбирают с учетом вида и длительности контакта пациента с изделием в соответствии с 4.2 и 4.3.

4.4.6.1 Экстракция, моделирующая условия применения изделия в медицинской практике (эталонный метод)

4.4.6.1.1 Водная экстракция, моделирующая условия применения, является эталонным методом в том смысле, что это единственный метод, который дает результаты, напрямую сравнимые с предельными содержаниями остаточных количеств веществ в соответствии с требованиями 4.3. Эти предельные содержания выражены в дозах ЭО и ЭКГ, воздействующих на пациента.
Так как необходимо оценить остаточные количества веществ, воздействующих на пациента или пользователя в процессе применения изделия в нормальных условиях, требуются методы экстракции, моделирующие условия применения в медицинской практике. Экстракция, моделирующая условия применения изделия, должна проводиться с учетом максимального приближения к процессу применения.

Например, для многих парентеральных изделий или изделий, контактирующих с кровью, может быть использована экстракция водой или другими водными средами путем заполнения или пропускания модели среды через те пути, по которым протекает кровь или жидкость, там, где это возможно. Экстракцию из образцов проводят в течение времени, равного или превышающего максимальное время использования при одинаковом применении (что обеспечивает полную экстракцию) и при температуре, максимально приближенной к реальным условиям применения. Альтернативным способом является приготовление серии экстрактов (не менее трех), охватывающих более короткие промежутки времени, на основании которых определяют скорость экстракции для расчета влияния более длительного или многократного воздействия.

Для определения дозы ЭО или ЭХГ, воздействующих на пациента или пользователя в течение времени применения изделия, используют метод водной экстракции, моделирующей условия применения. Метод экстракции, моделирующей условия применения, должен быть оценен с точки зрения того, насколько точно он отражает реальные количества веществ, воздействующих на пациента.

П р и м е ч а н и е — Количества ЭО (или ЭХГ), выделенные путем экстракции, моделирующей условия применения, необходимо дождаться с их общим содержанием в изделии.

Для извлечения остаточных количеств ЭО и ЭХГ методом экстракции, моделирующей условия применения, в качестве модельной среды используют воду и другие водные среды [52]. Эти водные среды используют для извлечения остаточных количеств ЭО, а не для растворения материала самого образца. Если предполагается моделирование применения изделия путем заполнения, его заполняют таким образом, чтобы не образовывались воздушных мешков. Если анализ проводят не сразу, экстракт накапливают в емкости, герметично закрывают крышкой из прокладкой из политетрафторэтилена.

Свободное пространство в емкости с любым раствором или экстрактом должно составлять менее 10 % общего объема. Экстракт можно хранить в холодильнике в течение нескольких суток (приложение E), но если использовали водную экстракцию, следует соблюдать осторожность, так как ЭО может превращаться в этиленгликолов или ЭХГ (или в оба продукта) в процессе хранения экстракта [18]. Анализ должен оценить возможность превращения при хранении.

4.4.6.1.2 Исчерпывающая экстракция представляет собой приемлемый альтернативный метод и может дать полезную информацию. Как правило, остаточные количества веществ, полученные этим методом, соответствуют дозе, большей или равной той, которую может получить пациент. Поскольку экстракция данного вида исключает возможность определения дозы в зависимости от времени, она не гарантирует, что масса остаточного количества ЭО не поступила к пациенту в первые 24 ч или 30 сут воздействия. Однако если все допустимые предельные значения согласно 4.3 соблюдаются и показано, что остаточное содержание веществ удовлетворяет требования для изделий, подвергающихся исчерпывающей экстракции, нет необходимости проводить в дальнейшем экстракцию, моделирующую условия применения. Когда используют исчерпывающую экстракцию, обращают особое внимание на предельные значения, рассчитанные для первых 24 ч и 30 сут согласно 4.3.

4.4.6.2 Исчерпывающая экстракция (приемлемый альтернативный метод)
4.4.6.2.1 Методы исчерпывающей экстракции предназначены для определения полного содержания остаточных веществ в изделии. Для определения ЭО применяют методы экстракции, включающие в себя температурную экстракцию с последующим анализом равнovesной паровой фазы, экстракцию растворителем, когда экстракт анализируют методом равнovesной паровой фазы, прямым хроматографированием экстракта или путем получения бромгидрородиного производного ЭО, которое определяют с использованием более чувствительного ГХ-детектора.

а) Остаточное содержание ЭО
Для определения остаточного содержания ЭО методом исчерпывающей экстракции существует ряд модельных средств. Примером метода, в котором не используют модельную среду, является температурная дессорбция с последующим анализом равнovesной паровой фазы, как описано в В.5.3. При проведении анализа подобным образом методом с использованием равнovesной паровой фазы считают исчерпывающими, поскольку они предназначены для выделения всех остаточных количеств ЭО в образце. Однако данным методам нельзя отдать предпочтение, или они могут быть вообще невыполнимыми при прямом
анализе. Выполняя анализ методом равновесной паровой фазы при определении остаточного содержания ЭО в полимерных материалах, таких как полиметилметакрилат, анализик должен обратить особое внимание на то, чтобы обеспечить полное выделение ЭО.

Для методов жидкостной экстракции выбор подходящей модельной среды зависит от состава материала изделия и его фрагментов. Чтобы облегчить полное выделение ЭО из образца, в методе исчерпывающей экстракции предпочтение следует отдать жидкостям, которые растворяют материал образца, при условии, что данным методом в раствор не будут внесены мешающие вещества. Методы жидкостной экстракции в сочетании с анализом равновесной паровой фазы описаны в 5.5.4. Такие методы могут оказаться удобными для отделения ЭО от мешающих химических веществ, соэкстрагируемых из вещества, составляющего основу образца. Модельные среды, приведенные в 5.3.2, были оценены в ходе сравнительных межлабораторных исследований [66], [67]. Для того, чтобы установить пригодность других модельных сред для метода исчерпывающей экстракции, следует оценить эффективность экстракции по отношению к одному или нескольким методам, изложенным в настоящем стандарте.

Аналитическая методика предписывает в случае использования метода исчерпывающей экстракции при первичном анализе исследуемого образца проводить определение несколько раз, чтобы убедиться в количественном извлечении. Для изделий, содержащих относительно малые количества остаточного ЭО, общепринятые методы могут не обеспечить экстракцию этих количеств даже после относительно продолжительной экстракции.

b) Остаточное содержание ЭХГ

Для экстракции остаточных количеств ЭХГ из изделий обычно используют воду.

4.4.6.2.2 Изделия небольших размеров помещают в емкость для экстракции целиком и проводят экстракцию из всего изделия. Для изделий больших размеров, когда необходимо определить остаточное содержание ЭО в части изделия, отбирают представительные фрагменты материалов, входящих в состав изделия. В последнем случае следует соблюдать осторожность. При необходимости, для того, чтобы убедиться в правильности данных, полученных при анализе небольших образцов изделий больших размеров, отбирают несколько представительных фрагментов изделия.

Эти представительные фрагменты могут быть отобраны двумя способами. При наличии нескольких разных материалов доля каждого компонента по сравнению с массой образца должна соответствовать доле этого компонента по отношению к общей массе исследуемого изделия. В качестве альтернативы для исследования может быть выбрана часть изделия, если ее оценка показала, что она является наихудшей с точки зрения содержания остаточных продуктов. Выбранный метод должен быть обоснован.

4.4.7 Результаты анализа и их интерпретация

4.4.7.1 Вычисление количества экстрагируемых остаточных веществ

Общее количество экстрагируемых остаточных веществ \(AE \), мг, рассчитывают исходя из концентрации остаточных веществ, обнаруженных в экстрактах, по формуле

\[
AE = \sum_{0}^{n} ER \cdot EV,
\]

где \(n \) — число экстракций;

\(ER \) — концентрация ЭО, определенная по калибровочной кривой, мг/мл;

\(EV \) — объем экстракта, мл.

Остаточное содержание при экстракции, моделирующей условия применения изделия, \(AR \), мл, рассчитывают по формуле

\[
AR = \frac{ER \cdot m}{\rho},
\]

где \(ER \) — концентрация ЭО, определенная по калибровочной кривой, мг/мл;

\(m \) — масса экстракта, г;

\(\rho \) — плотность воды, г/мл.

Остаточное содержание при исчерпывающей экстракции \(AE \), мг, рассчитывают по формуле

\[
AE = \frac{R_S \cdot m_0}{m_S},
\]

где \(R_S \) — масса остаточных веществ, экстрагированных из образца, мг;

\(m_0 \) — общая масса изделия, г;

\(m_S \) — масса образца, г.
ГОСТ Р ИСО 10993-7—2009

4.4.7.2 Расчет средней действующей дозы (ADD) для сравнения с допустимыми значениями, предсказанными в 4.3
Для изделий постоянного контакта среднесуточную дозу ADD рассчитывают по формуле

\[ADD = \frac{AE}{25000}, \]

где 25000 — продолжительность жизни, сут;
AE — в соответствии с 4.4.7.1.
Для изделий постоянного контакта ADD также должны соответствовать допустимым значениям, установленным для изделий длительного и кратковременного контакта.
Для изделий длительного контакта ADD рассчитывают по формуле

\[ADD = \frac{AE}{30}, \]

где 30 — число суток в месяц;
AE — в соответствии с 4.4.7.1.
Для изделия длительного контакта ADD также должны соответствовать допустимым значениям, установленным для изделий кратковременного контакта.
Для изделий кратковременного контакта ADD рассчитывают по формуле

\[ADD = AE, \]

где AE — в соответствии с 4.4.7.1.

5 Выпуск продукции

Изделия соответствуют настоящему стандарту, если они отвечают требованиям по содержанию ЭО и, при необходимости, ЭХГ.
Если имеются соответствующие экспериментальные данные по диффузионной кинетике остаточных веществ, изделия для оценки их качества можно сгруппировать по сходству материалов, процессу изготовления и применению (приложение С).
Для выпуска партии стерильных изделий используют один из методов, описанных в 5.1 и 5.2.

5.1 Выпуск продукции без использования данных по кривым дегазации
Когда результаты по кривым дегазации изделий отсутствуют, изделия могут быть выпущены, если они соответствуют настоящему стандарту, а данные, полученные в результате исследований, проведенных по методикам, описанным в приложении В, соответствуют требованиям по содержанию ЭО и, при необходимости, ЭХГ, установленным в 4.3.

5.2 Методика выпуска продукции с использованием кривых дегазации
Кривые дегазации используют для определения времени после стерилизации, необходимого для того, чтобы содержание остаточных веществ в изделиях или группах однородных изделий достигло значений, особенно в отношении ЭО, соответствующих требованиям 4.3. Изделия должны поставляться на рынок с учетом предварительно установленного времени после окончания стериллизации и условий, определяемых по экспериментальным кривым дегазации так, чтобы остаточные содержания ЭО в изделиях удовлетворяли требованиям 4.3.
Вопросы дегазации продукции, изложенные в приложении С, должны рассматриваться на основе данных о качестве простерилизованных партий, которые хранятся в условиях контролируемой дегазации в разные времена года при разных температурах дегазации. Для получения экспериментальных данных при построении кривых дегазации необходимо учитывать наличие других, находящихся рядом, простерилизованных ЭО изделий.
Выпуск изделий, произведенных и простерилизованных в контролируемых условиях в соответствии с [1] или [2], осуществляют, если собраны данные минимум от трех партий изделий, простерилизованных в разное время. Миграция ЭО из большинства материалов и изделий протекает как кинетическая реакция первого порядка, т. е. \(\ln(30) \) пропорционален времени, прошедшему после стерилизации. График зависимости натурального логарифма экспериментально определенной концентрации ЭО от времени, прошедшего после стерилизации, линеен. Выпуск изделий определяется временем, прошедшим после стерилизации, соответствующим точке пересечения средней линии регрессии со значением максимально допусти-
мого уровня содержания остаточных веществ. Этот подход можно использовать для изделий, которые стерилизуются в количестве (число стерилизуемых партий), не достаточном для использования в методе, описанном ниже, или пока собираются данные по кривым дегазации. Использование для построения кривых дегазации регрессионного анализа данных, собранных в результате обработки достаточного числа временных точек, по меньшей мере, для трех партий изделий, обеспечивает выпуск изделий с допустимым содержанием остаточных веществ на прогнозируемом уровне \(PL\) с доверительной вероятностью 95%. Кривые времени — концентрация для изделий, выполненных из комбинации различных материалов, могут не соответствовать этой простой модели во всей рассматриваемой области и потребовать отдельного рассмотрения.

Прогнозируемый уровень \(PL\) вычисляют по формулам

\[
x_0 = \frac{y_0 - a}{b},
\]

\[
PL = x_0 + t_\alpha \sqrt{\frac{(s_0)^2}{b^2} \left[1 + \frac{1}{n} + \frac{(y_0 - y_\mu)^2}{b^2 \Sigma (x_i - x_\mu)^2} \right]},
\]

где

- \(x_0\) — расчетное среднее значение времени выпуска изделия, соответствующее допустимому содержанию ЭО, ч;
- \(y_0\) — значение логарифма допустимого содержания ЭО;
- \(a\) — отрезок прямой линейной регрессии;
- \(b\) — угол наклона линии регрессии;
- \(PL\) — прогнозируемое предельное значение для одной единицы изделия;
- \(t_\alpha\) — значение коэффициента Стьюдента при доверительной вероятности \(\alpha\) с \((n - 2)\) степенями свободы;
- \((s_0)^2\) — дисперсия линии регрессии для остаточных веществ;
- \(y_\mu\) — среднее значение логарифма ЭО;
- \(n\) — число измеряемых величин;
- \(x_\mu\) — время, прошедшее с момента стерилизации, при котором были проведены измерения;
- \(\Sigma (x_i - x_\mu)^2\) — сумма квадратов для \(x\) (время).

Все данные, используемые для выпуска изделий в соответствии с настоящим стандартом, должны быть получены в процессе экспериментов и анализов, выполненных по стандартизированным методикам.

При изменении условий стерилизации, перечисленных в приложении С, следует провести проверку содержания остаточных веществ в изделии. Если эта проверка показывает увеличение уровня остаточного содержания ЭО, чтобы убедиться в пригодности изделий, следует получить новые кривые дегазации остаточных веществ.
Оценка хроматограмм, полученных методом газовой хроматографии

A.1 Общие положения
В настоящем приложении устанавливается минимальный набор требований при выполнении аналитических методик, используемых для определения ЭО и ЭХГ.

A.2 Источники
Эти требования приведены в справочниках по газовой хроматографии [106] и перед выполнением какой-либо методики должны быть проанализированы аналитиком. Рекомендуется также просмотреть статьи, касающиеся пределов обнаружения [12], [18], [39].

A.3 Обозначения
В настоящем приложении используют следующие обозначения (см. рисунки A.1, A.2):
- \(R \) — разрешение;
- \(T \) — фактор образования «хвоста» пика;
- \(t_1, t_2 \) — время удерживания хроматографических пиков 1 и 2, где \(t_1 \) соответствует пику ЭО (или ЭХГ), а \(t_2 \) — время удерживания ближайшего соседнего пика;
- \(W_1, W_2 \) — соответствующая ширина пиков, экстраполированная к базовой линии для пиков 1 и 2, выраженная в тех же единицах, что и время удерживания;
- \(W_{0.05} \) — ширина пика на уровне 5 % высоты;
- \(l \) — расстояние от максимума пика до начала фронта пика;
- \(k' \) — фактор емкости;
- \(t_b \) — время выхода компонентов, не удерживающихся на колонке, таких как воздух;
- \(t \) — время удерживания основного пика определяемого остаточного вещества (ЭО или ЭХГ).

A.4 Минимальные требования
A.4.1 Для выполнения методику рекомендуется, чтобы параметры отвечали следующим минимальным требованиям (см. рисунки A.1, A.2).

Разрешение \(R \) рассчитывают по формуле

\[
R = 2 \frac{(l_2 - l_1)}{(W_2 + W_1)}.
\]

Значение разрешения при расчете по площади или высоте пика должно быть больше или равно 1.2. Альтернативно фактор емкости рассчитывают по формуле

\[
k' = \frac{l}{t_b} - 1.
\]

Значение фактора емкости должно быть больше или равно 1.5.

Фактор образования «хвоста» пика рассчитывают по формуле

\[
T = \frac{W_{0.05}}{2l}.
\]

Значение «хвоста» пика должно быть меньше или равно 1.5.

При количественной оценке низких концентраций ЭО или ЭХГ отношение сигнал — шум должно быть, по меньшей мере, 10:1 (для определения соотношения сигнала—шум может оказать необходимым предусмотреть аттенюацию усилителя газового хроматографа 1×1).

Для вычисления разрешения и фактора образования «хвоста» пика скорость самописца должна быть не менее 10 см/мин, а высота пика должна составлять не менее 75 % полного размаха шкалы.
А.4.2 Номинальное относительное отклонение калибровочного графика (RSD) должно быть меньше или равно 5 % для ЭО и ЭХГ для ряда используемых контрольных растворов

\[RSD = \left(\frac{\sigma}{\lambda} \right) \times 100, \]

\[\sigma^2 = \frac{\left(\sum y^2 - \left(\frac{\sum y}{n} \right)^2 \right)}{n - 2} - S \left(\sum xy - \left(\frac{\sum x \sum y}{n} \right) \right), \]

где \(n \) — число измерений;
\(y \) — площадь или высота хроматографического пика;
\(x \) — концентрация контрольного раствора;
\(S \) — наклон линии регрессии для калибровочного графика, рассчитанный по методу наименьших квадратов;
\(\lambda \) — среднее значение;
\(\sigma \) — стандартное отклонение;
\(\sigma^2 \) — дисперсия.
ГОСТ Р ИСО 10993-7—2009

Эти критерии рассчитаны при многократных анализах, по крайней мере, трех контрольных растворов, приготовленных таким образом, чтобы они охватывали всю линейную область калибровочного графика, используемого в анализе ЭО и ЭХГ.

A.5 Базовая линия хроматограммы

Рекомендуется, чтобы между отдельными хроматографическими измерениями базовая линия возвращалась на уровень, не превышающий 5 % первоначальной базовой линии.

A.6 Дополнительные источники информации

Когда необходимо внести изменения в аналитические методики, изложенные выше, рекомендуют использовать следующие источники информации: руководство по эксплуатации используемого газового хроматографа, различные учебники по газовой хроматографии.
Газохроматографическое определение ЭО и ЭХГ

В.1 Хроматографические методики
В.1.1 Методы определения остаточного содержания ЭО
Для количественного определения ЭО в экстрактах используют различные методы. В научной литературе описан ряд методик проведения исчерпывающей экстракции с последующим определением ЭО методом газовой хроматографии. В библиографии даны ссылки на несколько опубликованных методов, а также на ряд обзорных статей. Возможно, также существует ряд неопубликованных методов для определения остаточного содержания ЭО. Опубликованные методы не всегда могут оказаться подходящими в связи с разнообразием изделий. Поэтому допускается использовать любой метод, являющийся аналитическим и оцененный в сравнении с утвержденными методами, изложенными в настоящем стандарте.

Метод является аналитическим, когда он обладает соответствующими точностью, селективностью, линейностью и чувствительностью, достаточными для определения уровня содержания этиленоксида в изделиях, который предназначен для анализа на соответствие предельным значениям остаточных количеств, установленным в 4.3, и применен к анализируемому изделию.

Методы, изложенные в настоящем приложении, являются арбитражными методами, по отношению к которым должен оцениваться любой альтернативный метод.

В настоящем приложении методы представлены таким образом, чтобы аналитик мог выбрать наиболее приемлемый. Для более детального осмысления каждого метода следует обращаться к оригинальной литературе. Аналитики должны установить стабильность контрольных растворов, используемых для калибровки в хроматографических методиках, и убедиться, что не используются контрольные растворы с просроченным сроком годности.

В.1.2 Подготовка контрольных растворов ЭО
В.1.2.1 Общие положения
В следующих пунктах изложены в общих чертах методики приготовления контрольных растворов для газовой хроматографии.

Примечание — Альтернативной является приготовление контрольных образцов, стабильность которых гарантирована, изготовленных под контролем Good Manufacturing Practices.

Готовят контрольные растворы либо объемным методом при растворении известных объемов газообразного ЭО, либо гравиметрически, растворяя жидкий ЭО известной массы. В обоих случаях строят стандартный калибровочный график зависимости высоты или площади пика от концентрации ЭО.

Рисунок В.1 — Устройство для приготовления стандартов ЭО
Соединяют баллон, содержащий ЭО с нормированными характеристиками, с флаконом объемом приблизительно 30 мл, снабженным пробкой, как показано на рисунке В.1, для чего трубкой связывают регулятор баллона с иглой для инъекций. Протыкают входной иглой (1) пробку флакона и опускают ее конец вниз до дна.

Внимание! Крайне важно для защиты аналитика от вредного действия проводить данную процедуру в вытяжном шкафу (см. 4.4.1).

Прожигают пробку флакона вглубь иглой для инъекций так, чтобы кончик иглы находился в верхней части флакона. Присоединяют трубку к выходной игле (2) и опускают конец трубки в стакан с водой объемом 300 мл.

Начинают пропускать ЭО через систему таким образом, чтобы пузырьки вспыхивающего газа выходили из трубки со скоростью один пузырек в секунду. Продолжают сосуд в течение приблизительно 15 мин. Удаляют входную иглу (1) из флакона и уравновешивают давление газообразного ЭО в сосуде с атмосферным, что достигается удалением выходной иглы (2), как только исчезнут пузырьки в стакане с водой. В приближении к концу для идеальных газов можно показать, что концентрация ЭО во флаконе составит 1,83 mg/ml при давлении 760 мм рт. ст.1) и температуре 20 °C.

Концентрация этиленоксида p_{EO}, mg/ml, согласно закону для идеальных газов, может быть рассчитана для конкретной температуры T в градусах Цельсия и давления p, мм рт. ст., по формуле

$$p_{EO} = \frac{0,706 \cdot p}{273+T},$$

где 0,706 — значение, обратное газовой постоянной R для определения ЭО, кг/мм рт. ст. л.

В.1.2.2 Разбавления контрольного раствора ЭО для анализа методом равновесной паровой фазы

Разбавляют контрольный раствор, приготовленный согласно В.1.2.1, во флаконе (номинальный объем 15 мл). Объем флакона должен быть предварительно определен с погрешностью до 0,01 мл (при анализе образцов необходимо использовать флаконы такой же вместимости). Сначала во флакон пропускают сухой азот в течение 1 мин. Из флакона с газообразным ЭО отбирают около 10 мл с помощью газового шприца. Удаляют шприц из флакона, а затем шприц получают желаемый объем в положении с поднятой вверх иглой.

Помещают флакон, заполненный азотом, на конец направленной вверх иглой и вводят 10 мл ЭО во флакон. Не прокачивая шприца, немедленно удаляют его из флакона. Теперь флакон содержит 18,3 mg ЭО при температуре 20 °C и давлении 760 мм рт. ст. Уравновешивают концентрацию ЭО с окружающими условиями, как описано в В.1.2.1.

Вводят пробу газа 100 мл из флакона в газовый хроматограф для получения хроматограммы. Анализ повторяют дважды. Приготовленные более высококонцентрированные контрольные растворы путем разбавления большей дозой чистого газообразного ЭО. Так как во флаконах содержится свободный газообразный ЭО, контрольные растворы не нужно нагревать в отличие от других образцов.

В.1.2.3 Разбавления контрольных растворов ЭО для методов с участием растворителя

П р и м е ч а н и я

1 Удобнее переносить жидкую ЭО с помощью предварительно охлажденного шприца. Следует принять меры предосторожности, чтобы игла шприца не касалась растворителя.

2 Опыт показал, что ошибки измерения, связанные с приготовлением основных растворов, постоянны и не зависят от объема приготовленного раствора. Относительная ошибка будет меньше, если приготовить и использовать большие объемы.

3 Данную методику используют также и для приготовления водных контрольных растворов ЭО.

Устанавливают баллон, содержащий газообразный ЭО с нормированными характеристиками, как описано в В.1.2.1, соединив его с флаконом, предварительно продутым, как описано выше, и помещенным в бану со смесью сухого льда с изопропанолом или аналогичной, чтобы сконденсировать газообразный ЭО в жидкость. К флакону через иглу для инъекций присоединяют только трубку, по которой поступает ЭО из баллона. Нет необходимости вставлять выходную иглу (2), так как ЭО собираются в жидком виде.

Заполняют флакон нужным объемом жидкого ЭО, перекрывают регулятор на баллоне и удаляют входную иглу (1) с трубкой. Достают флакон из баны с льдом.

Взявляют герметически закрытую мерную колбу объемом 100 мл (с пробкой, покрытой из ПТФЭ), содержащую 60 мл раствора, с погрешностью 0,1 мл. Добавляют в колбу пять капель жидкого ЭО и вновь взявляют. Заполняют колбу растворителем до отметки 100 мл, перерорачивают и перемешивают.

Готовят ряд разбавленных растворов, смешивая дозовые контрольного раствора с подходящим объемом растворителя. Если, например, точно 100 mg ЭО было добавлено к 100 мл раствора, конечная концентрация будет составлять 1 mg/ml. Разбавляют 1 мл этого раствора до 10 мл, получают контрольный раствор с содержением

1) 1 мм рт. ст. = 133,322 Па; 760 мм рт. ст. = 101,325 кПа.

2) Опыт практической газовой хроматографии показывает, что при введении образцов в колонку газового хроматографа точность ввода ухудшается при увеличении вводимого объема образца. Относительная ошибка, связанная с неточностью калибровки шприца, уменьшается при увеличении вводимого объема.
ЭО 100 мкг/мл. Таким же способом готовят контрольные растворы с более высокой и более низкой концентрацией ЭО. Готовят контрольные растворы таким образом, чтобы они охватывали всю область ожидаемых количеств ЭО в анализируемом образце. Вводят от 1 до 5 мл аликвот каждого контрольного раствора в колонку хроматографа для получения значения площади или высоты пика. Определение повторяют дважды.

Для повышения точности объем вводимой пробы должен составлять не менее 10 % объема шприца.

В.1.3 Приготовление контрольных растворов ЭГ

Взвешивают мерную колбу объемом 100 мл, содержащую 60 мл воды, с погрешностью 0,1 мл. По каплям добавляют ЭГ (около 100 мл). Вновь взвешивают колбу. Если контрольные растворы хранят в течение некоторого времени, определяют разницу в массах; затем доводят объем до метки водой и перемешивают. Если контрольные растворы используют не сразу, их хранят в холодильнике (см. приложение Е). После 14 сут хранения контрольные растворы подлежат уничтожению.

Доводят контрольные растворы ЭГ до комнатной температуры. Готовят, как минимум, три рабочих раствора различной концентрации. До использования контрольных растворов для построения калибровочного графика проверяют линейность параметров хроматографического пика в этих областях концентраций. Готовят контрольные растворы таким образом, чтобы они охватывали всю область ожидаемых содержаний ЭГ в анализируемом образце. Для определения значения площади или высоты пика вводят аликвоты каждого контрольного раствора от 1 до 5 мл в колонку хроматографа. Определение повторяют дважды.

В.2 Точность методов

В.2.1 Методы определения ЭО

Межлабораторная оценка ряда методов определения ЭО, изложенных в приложении В. [66] — [68], была проведена с использованием серий образцов, содержащих ЭО от 40 до 350 мкг/кг. Вычисленный общий коэффициент вариации изложенных методов представлен в таблице В.1.

Таблица В.1 — Сравнение коэффициентов вариации при внутри- и межлабораторном изучении методов

<table>
<thead>
<tr>
<th>Определение ЭО</th>
<th>Межлабораторное изучение, %</th>
<th>Внутримежлабораторное изучение, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Метод равновесного пара</td>
<td>3,7</td>
<td>21,3</td>
</tr>
<tr>
<td>Метод с использованием ацетона</td>
<td>4,1</td>
<td>16,3</td>
</tr>
<tr>
<td>Метод с использованием DMF</td>
<td>2,9</td>
<td>8,3</td>
</tr>
<tr>
<td>Метод с использованием воды</td>
<td>2,7</td>
<td>17,0</td>
</tr>
</tbody>
</table>

При другом межлабораторном изучении проведена оценка метода определения ЭО, изложенного в B.5.6, [51]. Данные линейной регрессии были получены при сравнении результатов двух лабораторий для серий образцов, содержащих ЭО от 3,6 до 26 мкг/кг. Рассчитанное уравнение регрессии у = 0,04 + 0,904 х; коэффициент корреляции (r) = 0,974 (p < 0,00001). Рассчитанный коэффициент вариации метода при межлабораторном изучении составил 4,0 % при содержании ЭО в анализируемой матрице 14 мкг/кг или 8,3 % при содержании ЭО 30 мкг/кг (неопубликованные данные, представленные A. Nakamura, H. Kikuchi и K. Tsujii).

В двух лабораториях были получены данные анализ образцов с тремя различными содержаниями ЭО с использованием как метода экстракции растворителем с последующим анализом равновесной паровой фазы, изложенного в В.5.4, [81], так и метода бромирования, изложенного в Б.5.6, [51]. Результаты сравнивали, используя линейный регрессионный анализ. Были получены следующие характеристики регрессии: у = -0,03 ± 1,07 х, коэффициент корреляции r = 0,999. При межлабораторном изучении методики, представленной в B.5.4, коэффициент вариации составлял 4,7 %, 1,8 % и 2,7 % при содержании ЭО в анализируемой матрице 12, 25 и 56 мкг/кг соответственно, [77].

В.2.2 Методы определения ЭГ

Межлабораторную оценку проводили с использованием метода определения ЭГ, изложенного в B.5.7, [9]. Вычисленный коэффициент вариации был следующим:

7,46 % — при внутрилабораторном изучении; 10,99 % — при межлабораторном изучении.

Эти данные были получены для концентраций ЭГ от 3,0 до 100 мкг/мл.

В.3 Оборудование и реактивы

В.3.1 Оборудование

В.3.1.1 Газовый хроматограф, оснащенный пламенно-ионизационным детектором (FID) или детектором электронного захвата (ECD).

П р и м е ч а н и е — Для получения воспроизводимых результатов предпочтительно использовать электронный интегратор.

В.3.1.2 Инъекционные иглы и трубки из поливинилхлорида, необходимые для приготовления контрольных растворов.
ГОСТ Р ИСО 10993-7—2009

3.1.3 Мерная стеклянная посуда, снабженная пробками, покрытыми ПТФЭ, или прокладками из ПТФЭ, для приготовления контрольных растворов.

Примечания
1 Для стеклянной посуды с закатываемыми крышками необходим инструмент для закатки.
2 Следует соблюдать меры предосторожности при выборе стеклянной посуды подходящей вместимости, с тем чтобы уменьшить пространство, занятое равновесным паром, над раствором экстракта или контрольным раствором. При приготовлении жидкостей контрольных растворов или экстрактов пространство, занятое равновесным паром, должно быть менее или равно 10 % объема экстракта или контрольного раствора.

3.1.4 Микропипет (объемом 5 или 10 мл) для ввода аликвот экстракта в газовый хроматограф.
3.1.5 Вытяжной шкаф для обеспечения соответствующей вентиляции при приготовлении контрольных и других растворов.
3.1.6 Аналитические весы, обеспечивающие взвешивание с погрешностью до 0,1 мг.
3.1.7 Газовый регулятор для емкости, содержащей ЭО.
3.1.8 Газонепроницаемые шприцы объемом 10, 50, 100 и 1000 мл для приготовления контрольных растворов и ввода равновесной паровой фазы в колонку газового хроматографа.
3.1.9 Лабораторный термостат для нагревания образцов до температуры (100 ± 2 °C).
3.1.10 Лабораторный термостат для нагревания образцов до температуры (37 ± 1 °C).
3.1.11 Водяная баня для термостатирования образцов при температуре (70 ± 2 °C).
3.1.12 Механический встряхиватель.
3.1.13 Стеклянные емкости для проведения анализа методом равновесного пара, снабженные прокладками с покрытием из ПТФЭ и закатанными крышками, номинальным объемом 20 мл для приготовления контрольных растворов при построении калибровочного графика.

Примечания — Для стеклянной посуды с закатываемыми крышками необходим инструмент для закатки.

3.1.14 Емкость с плоским дном и завинчивающейся крышкой объемом 4 мл (≈ 15 мм в диаметре), снабженная силиконовой прокладкой с покрытием из ПТФЭ и тонкой прокладкой из ПТФЭ, которую используют для экстракции и получения производных ЭО.
3.1.15 Игла для ввода бромистоводородной кислоты диаметром 0,65 мм и длиной 24 мм.
3.1.16 Фильтр фирмы «Миллипор»1) с порами размером 45 мкм для фильтрации реакционной смеси перед хроматографическим определением.
3.1.17 Холодильная камера для хранения образцов при температуре от 2 °C до 8 °C.
3.2 Реактивы
3.2.1 Эпиксилан (эпилиноксид) в подходящем газовом баллоне; содержание основного вещества — 99,7 %.
3.2.2 2-Хлорэтанол (этиленхлоридин); содержание основного вещества ≥ 99 %.
3.2.3 1,2-Эпоксипропан (пропиленоксид), реактив.
3.2.4 Свежеперегнанная (дяжжая) бромистоводородная кислота, приготовленная следующим образом. Перегоняют 100 мл 47 %-ной бромистоводородной кислоты в присутствии 100 мл хлорида олова (II). Первые 25 мл дистиллята отбрасывают, а следующие 50 мл собирают. Вновь перегоняют 50 мл дистиллята в присутствии 50 мл хлорида олова (II), отбрасывают первые 15 мл дистиллята и собирают следующие 20 мл бесцветной жидкости (температура кипения от 125 °C до 126 °C). Хранят в стеклянном контейнере со стеклянной пробкой и используют в течение недели.
3.2.5 Хлорид олова (II), реактив.
3.2.6 Вода, пригодная для газовой хроматографии по степени чистоты.
3.2.7 Этиловый спирт, пригодный для газовой хроматографии по степени чистоты.
3.2.8 Пропанон (ацетон), пригодный для газовой хроматографии по степени чистоты.
3.2.9 Диметилформамид (ДМФА), пригодный для газовой хроматографии по степени чистоты.

4 Приготовление контрольных растворов
4.1 Приготовление контрольных растворов ЭО
Соответствующие контрольные растворы готовят методом, изложенным в 4.1.2.
4.2 Приготовление контрольных растворов ЭКГ
Контрольные растворы ЭКГ готовят методом, изложенным в 4.1.3.

1) «Миллипор» — торговая марка продукта. Данная информация приведена только для удобства пользователей настоящего стандарта, она не является характеристикой качества изделий со стороны ИСО. Можно использовать аналогичные изделия, если показано, что результаты от этого не изменяются.
Приготовление контрольных растворов пропиленоксида (ПО)
Готовят контрольные растворы растворением ПО в этиловом спирте таким образом, чтобы получить раствор концентрацией 0,5 мг/мл.

В.5 Экстракция из изделий
В.5.1 Общие положения
Готовят экстракты в соответствии с указаниями, представленными в 4.4.6.

В.5.2 Экстракция, моделирующая условия применения изделия
Для моделирования условий применения изделия в медицинской практике применяют воду. Осуществляют экстракцию в условиях, наиболее приближенных к тем, в которых применяют изделие.

Например, выполняют экстрагирование из изделий, контактирующих с кровью, и парентеральных изделий водой или другими жидкостями путем их полного заполнения, или пропуская модельную среду по тем каналам, по которым протекает кровь или жидкость (подходит любой метод).

Примечание — При полном заполнении необходимо убедиться, что отсутствуют пустоты.

Когда невозможно заполнить составные части изделия, контактирующие с пациентом или пользователем, помещают все изделие или исследуемый фрагмент изделия в подходящий контейнер, соблюдая нужное соотношение образца/модельная среда. Чтобы убедиться в достоверности данных, полученных при анализе небольших образцов или изделий большого размера, отбирают несколько представительных фрагментов изделия.

Образцы подвергают экстракции в течение времени, равного или превышающего наибольшее время контакта изделия с пациентом при одноразовом применении. Выбирают температуру экстракции в соответствии с 4.4.6. В качестве альтернативного метода готовят серию экстрактов (рекомендуется, как минимум, три), соответствующих нескольким более коротким периодам времени, и используют скорость экстракции для вычисления влияния при более длительном или многократном воздействии.

Если анализ не проводят сразу, декантируют экстракт во флакон и хранят, закрыв пробкой с прокладкой, покрытой ПТФЭ. Пространство, занятое равновесным паром, во флаконе с контрольным раствором или экстрактом должно быть не менее 10 % общего объема. Экстракт хранят в холодильной камере до 4 сут. Когда для определения EO и ЭХГ используют водные экстракты, соблюдают меры предосторожности, так как в процессе хранения водного экстракта [18] EO может превратиться в Эг или ЭХГ, или в оба этих продукта.

В.5.3 Методика исчерпывающей экстракции при повышенной температуре
Взвешивают 1 г образца с погрешностью 0,1 мг и помещают его во флакон объемом 15 мл с самоуспокаивающейся мембраной и закатанной крышкой. Помещают герметично закрытый флакон в термомешку, нагретый до 100 °С, и термостатируют в течение 60 мин. Вынимают флакон из термомешка, доводят до комнатной температуры и энергично перемешивают до отбора пробы. Вводят 100 мл пробы равновесной паровой фазы в колонку хроматографа (анализ повторяют дважды) и определяют высоты и площади пиков, соответствующих EO. Рассчитывают среднее значение для двух измерений.

Используя вытяжной шкаф, удаляют крышку с флакона и продувают его в течение 30 с сухим азотом. Используя новую мембрану, снова закатывают крышку и повторяют нагревание и ввод пробы до полного извлечения EO. Полное извлечение достигается, когда экстрагируемое количество EO составляет менее 10 % полученного при первой экстракции. С использованием калибровочного графика рассчитывают количество EO в образце, суммируя количество EO, полученные для средних значений измерений площадей или высот пиков при каждом из нескольких нагреваний образца.

Примечания
1 Выбор режима времени/температуры, описанного в В.5.3, относительно произведен. Более пригодной экспериментальной методикой является изменение времени для достижения равновесия парциального давления EO с паровой фазой. Будьте осторожны. При введении пробы игла не должна соприкаться с наполнителем колонки. Опыт показал, что анализ горячих образцов сразу после того, как они были удалены из термомешка, часто приводит к ошибке более 20 % из-за потери материала в шприце, так как при удалении шприца из флакона давление в шприце уравновешивается с атмосферным давлением. Некоторые материалы ресорбируют EO во время уравновешивания их температуры с комнатной. Существуют также некоторые материалы, которые полностью ресорбируют EO при охлаждении. При проведении анализа таких материалов может оказаться необходимым вводить исследуемые образцы и контрольные растворы в колонку хроматографа, пока они еще горячие или теплые, а затем прокачать шприц без дальнейшего охлаждения.

2 Рабочая группа 11 ИСО/ГК 194 изучала автоматизированные методики анализа равновесной паровой фазы с точки зрения их включения в будущие издания настоящего стандарта.
В.5.4 Исчерпывающая экстракция этиловым спиртом с последующим анализом этанольных экстрактов методом равновесной паровой фазы

![Diagram](image)

1 — жидкость; 2 — О-образное кольцо; 3 — зажим; 4 — равновесная паровая фаза; 5 — самоплотняющаяся мембрана

Рисунок В.2 — Специальный флакон для проведения анализа методом равновесной паровой фазы

В.5.4.1 Контрольные растворы для построения калибровочного графика
Готовят контрольные растворы, разбавляя ЭО в этиловом спирте таким образом, чтобы получить растворы с концентрацией ЭО 0,4; 0,8; 1,2; 1,6 и 2 мг/мл. Готовят контрольный раствор ПО в этиловом спирте концентрацией 0,5 мг/мл в соответствии с БАЗ. Охлаждают эти растворы и соответствующее число специальных флаконов для анализа методом равновесной паровой фазы (рисунок В.2) в бане, заполненной смесью сухого льда с изопропанолом, или аналогичным образом. Переносят соответствующие аликвоты каждого контрольного раствора ЭО и те же самые объемы контрольного раствора ПО во флаконы для проведения анализа методом равновесной паровой фазы. Термостатируют флаконы при температуре 70 °C в течение 30 мин и вводят от 100 мкл до 1 мл аликвот равновесной паровой фазы из каждого флакона в колонку газового хроматографа (анализ проводят дважды). Чтобы получить калибровочный график, измеряют высоты или площади пиков ЭО и ПО и строят зависимость отношения высот или площадей пиков от концентрации ЭО.

В.5.4.2 Методика анализа
Взвешивают 5 (или 0,5) г исследуемого образца, разрезанного на небольшие кусочки (длиной 5 мм для трубок, площадью 10 мм² для пластина), с погрешностью до 0,1 г и помещают во флакон объемом 100 (или 10) мл для проведения анализа методом равновесной паровой фазы. Добавляют во флакон 50 (или 5) мл контрольного раствора ПО (0,25 мг/мл). Закрывают флакон, заключая крышку и термостатируют герметично закрытый флакон при температуре 70 °C в течение 3 ч с лёгким встряхиванием. Вводят от 100 мкл до 1 мл равновесной паровой фазы в колонку газового хроматографа и определяют отношение параметров пиков ЭО/ПО (определение повторяют дважды). Используя калибровочный график, вычисляют среднее содержание ЭО для двух параллельных образцов.

В.5.5 Исчерпывающая экстракция с использованием растворителя
Взвешивают около 1 г образца (или 0,5 г пластина) и помещают в мерную стеклянную посуду с крышкой такой вместимости, чтобы объем равновесной паровой фазы был минимален. С помощью пипеток добавляют в мерную колбу 10 мл выбранного растворителя. Закрывают колбу и оставляют при комнатной температуре на 24 ч.

Примечание — это значение температуры и времени использовались при сравнительном изучении. Можно использовать другие значения времени и температур, если обстоятельства позволяют.

Вводят аликвоты от 1 до 5 мкл в колонку хроматографа (анализ повторяют дважды). Вычисляют содержание ЭО в образцах, используя калибровочный график, и рассчитывают среднее значение для двух анализов.

В.5.6 Исчерпывающая экстракция этиловым спиртом с последующим получением бромгидринового производного и газохроматографическим определением с использованием ECD
В.5.6.1 Контрольные растворы для построения калибровочного графика
Готовят контрольные растворы, растворяя ЭО в этиловом спирте, чтобы получить растворы, содержащие ЭО в концентрациях 0,4; 0,8; 1,2; 1,6 и 2 мг/мл. Готовят контрольный раствор, содержащий ПО в этиловом спирте.
с концентрацией 0,5 мкг/мл, в соответствии с БА3. Готовят контрольные смеси, смешивая равные объемы каждого контрольного раствора ЭО и контрольного раствора ПО.

Переносят 1 мл каждой смеси во флаконы с завинчивающейся крышкой\(^1\). Добавляют 2 капли (0,015 г) бромистоводородной кислоты к смеси через мембрану с помощью инъекционной иглы. Оставляют флакон при комнатной температуре на 1 ч. Нагревают флакон в течение 1 ч при температуре 50 °С на водяной бане с легким перемешиванием, затем охлаждают до комнатной температуры.

Добавляют 0,02 г бикарбоната натрия во флакон и перемешивают путем встряхивания в вертикальном направлении в течение 30 мин. Оставляют флакон стоять на 10 мин. Встряхивают флакон в горизонтальном направлении в течение 30 мин. Оставляют флакон стоять на 10 мин, а затем центрифугируют с частотой вращения 3000 об/мин в течение 5 мин. Фильтруют смесь через фильтр «Миллипир»\(^2\).

Чтобы получить значения отношений высоты пика этиленгликолида (ЭГ) и пропиленгликолида (ПГ), вводят 1 мкл аликовые каждого фильтрата в колонку газового хроматографа (определение повторяют дважды). Строят калибровочный график — зависимость отношения высот пиков ЭГ/ПГ от количества ЭО в микрограммах.

В.5.6.2 Методика анализа

Используют данную методику с контрольными растворами, приготовленными в соответствии с В.5.6.1. Охлаждают контрольный раствор ПО (0,25 мкг/мл) и флакон с завинчивающейся крышкой в бане со сместью сухой лед/изопропиловый спирт или аналогичным образом. Переносят 1 мл контрольного раствора ПО во флакон.

Взвешивают от 10 до 30 мг исследуемого образца с погрешностью до 0,1 мг и помещают его во флакон. Добавляют две капли (0,015 г) бромистоводородной кислоты во флакон через мембрану с помощью инъекционной иглы. Оставляют флакон при комнатной температуре на 1 ч, а затем нагревают его на водяной бане при температуре 50 °С в течение 8 с легким перемешиванием и дополнительно еще в течение 16 ч при температуре 50 °С в термостате, а затем охлаждают до комнатной температуры.

Добавляют 0,02 г бикарбоната натрия во флакон и встряхивают флакон в вертикальном направлении в течение 30 мин. Оставляют флакон стоять на 10 мин. Снова встряхивают флакон в горизонтальном направлении в течение 30 мин. Оставляют флакон на 10 мин, а затем центрифугируют при частоте вращения 3000 об/мин в течение 5 мин. Фильтруют смесь через маленький фильтр «Миллипир».

Чтобы получить значения отношения высоты пика ЭГ к высоте пика ПГ, вводят 1 мкл аликовой каждого фильтрата в колонку газового хроматографа (определение повторяют дважды). Вычисляют среднее значение параллельных определений и определяют содержание ЭО в образце, используя калибровочный график.

В.5.7 Исчерпывающая экстракция этиленгликолида с использованием воды

Взвешивают от 1 до 50 г фрагмента образца (или целый образец) и помещают в стеклянную посуду такой вместимости, чтобы объем равновесной паровой фазы был минимальен. Вводят воду, исходя из соотношения от 1:2 и 1:10 (отношение массы образца в граммах к объему воды в миллилитрах) в контейнер и закрывают. Оставляют на 24 ч при комнатной температуре. Энергично перемешивают контейнер с содержимым в механической мешалке приблизительно 10 мин.

Вводят от 1 до 5 мл пробы в колонку газового хроматографа. Рассчитывают концентрацию ЭХГ в образце по относительной площади пика или высоте пика, используя предварительно построенный калибровочный график.

В.6 Газовая хроматография

В.6.1 Общие положения

Выбирают наиболее пригодный метод из приведенных в В.5.2 — В.5.7. Используют подходяющую аналитическую методику из тех, что представлены в таблице В.2.

П р и м е ч а н и е — Может потребоваться оптимизация условий.

В.6.2 Экстракция, моделирующая условия применения изделия

Для определения ЭО используют метод газохроматографического определения I с температурой термостата колонок от 60 °С до 75 °С. Для определения ЭХГ используют условии I (см. таблицу В.2) с температурой термостата колонок от 150 °С до 170 °С или условия II. Вводят аликовые водяная экстракта от 1 до 5 мл.

В.6.3 Методика исчерпывающей экстракции при повышенной температуре

Используют условия газохроматографического определения I с температурой термостата около 125 °С. Вводят аликовые равновесной паровой фазы 100 мл.

В.6.4 Исчерпывающая экстракция этиловым спиртом с последующим анализом методом равновесной паровой фазы этанольного экстракта

Используют условия IV.

В.6.5 Исчерпывающая экстракция этиловым спиртом с последующим приготовлением бромидированного производного и определением методом газовой хроматографии с детектором ECD

Используют условия VI.

\(^1\) Использование емкостей с U- или V-образной формой дна иногда вызывает неполную нейтрализацию, что приводит к плохим хроматограммам.

\(^2\) «Миллипир» — торговая марка продукта. Данная информация приведена только для удобства пользователей настоящего стандарта, она не является характеристической качества изделий со стороны ИСО. Можно использовать аналогичные изделия, если показано, что результаты от этого не изменяются.
<table>
<thead>
<tr>
<th>Условия</th>
<th>Размер: длина (м) × диаметр (мм)</th>
<th>Материал колонки</th>
<th>Фаза</th>
<th>Наименование газа</th>
<th>Скорость потока, мл/мин</th>
<th>Термостат колонок, °C</th>
<th>Инжектор</th>
<th>Детектор</th>
<th>Объем пробы, мл</th>
<th>Растворитель</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>2 × 2</td>
<td>Стекло</td>
<td>3 % Карбоксакса 20 М на Хромосорбе 101¹</td>
<td>60—75 (ЭО) 150—170 (ЭХГ)</td>
<td>20 — 40</td>
<td>200 — 210</td>
<td>220 — 250</td>
<td>1,0 — 5,0</td>
<td>Вода</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>2 × 2</td>
<td>Стекло</td>
<td>5 % Игепала CO-990 на Хромосорбе T¹</td>
<td>140 — 160</td>
<td>200 — 250</td>
<td>240 — 280</td>
<td>1,0 — 5,0</td>
<td>Вода</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>3 × 3,2</td>
<td>Нержавеющая сталь</td>
<td>20 % Трицианозетокспран на Хромосорбе WAW DMCS¹</td>
<td>20</td>
<td>1000</td>
<td>1000</td>
<td>Равновесная паровая фаза (над водным экстрактом)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>2 × 3</td>
<td>Стекло</td>
<td>25 % Флексола 8N8 на Хромосорбе WAW¹</td>
<td>40</td>
<td>120</td>
<td>120</td>
<td>100 — 1000</td>
<td>Равновесная паровая фаза (над этанольным экстрактом)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>2 × 2</td>
<td>Стекло</td>
<td>Хромосорб 102¹</td>
<td>20 — 40</td>
<td>200 — 210</td>
<td>220 — 250</td>
<td>1,0 — 5,0</td>
<td>Пропанон или ДМФ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>2 × 3</td>
<td>Стекло</td>
<td>10 % Карбоксакса 20 М на Хромосорбе WAW¹</td>
<td>60</td>
<td>250</td>
<td>250</td>
<td>1,0</td>
<td>Этанол</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Это торговые марки. Информация приведена для удобства пользователя настоящего стандарта и не является подтверждением качества данных продуктов со стороны ИСО. Могут быть использованы эквивалентные заменители, если обосновано, что они приводят к аналогичным результатам.
² Перед использованием необходимо провести кондиционирование колонки при температуре 190 °C в течение 7 сут.
Факторы, влияющие на содержание остаточных веществ в изделии

C.1 Параметры процесса стерилизации
Параметры определены в ИСО 11135 или ЕН 550. Однако, касаясь определения содержания остаточных веществ в изделиях, обработанных ЭО, необходимо выяснить, какие именно параметры влияют на уровень содержания остаточных веществ. Понимание кинетики миграции ЭО позволяет охарактеризовать целое семейство однотипных изделий, анализируя «наихудший» образец. Выделение семейства однотипных изделий, то есть изделий, сходных по размеру и применению, составу материала, упаковке, содержанию воды, подвергавшихся воздействию ЭО и окружающих условий, может исключить необходимость проведения анализа изделий каждого вида. Ниже приведены параметры, которые влияют на содержание остаточных веществ и могут потребовать проведения анализа одного или более «наихудших» представительных образцов.

C.1.1 Состав материала
Материалы могут различаться в значительной степени по своей способности абсорбировать, удерживать и десорбировать ЭО. Когда возможно превращение ЭО в ЭГ, появляется вероятность, что состав остаточных веществ будет весьма различен для двух сходных изделий, изготовленных из различных материалов. Например, материалы, содержащие источники свободных хлорид-ионов, дают большой разброс в концентрации образующегося ЭГ.
Аналогично, чтобы убедиться в достоверности результатов анализа целого изделия, в состав которого входит два различных материала, может потребоваться проведение анализа представительных образцов обоих материалов. Состав и размеры исследуемого образца играют особенно важную роль, когда рассматривается модель, отражающая условия применения изделий в медицинской практике.

C.1.2 Упаковка
Упаковочные материалы сильно отличаются по своей способности пропускать и удерживать как ЭО, так и другие возможные остаточные вещества, что может, в свою очередь, влиять на остаточное содержание ЭГ. Дополнительные источники разброса — плотность упаковки и плотность загрузки грузовых контейнеров.

C.1.3 Цикл стерилизации ЭО
Условия процесса обработки изделия ЭО влияют на содержание остаточных веществ. Эти условия влияют в себя концентрацию газа, время обработки, температуру, вид обработки (то есть используют чистый ЭО или смесь, содержащую ЭО, влажность (включая качество источника воды), воздушную подсушку, плотность самих изделий и плотность их загрузки при стерилизации, а также расположение партии изделий в стерилизаторе.

C.1.4 Дегазация
Остаточное содержание ЭО в изделиях также зависит от температуры дегазации, плотности и расположения партии изделий при дегазации, воздушного потока, площади поверхности изделий, которые подвергаются дегазации, и времени дегазации. Для ряда материалов известно, что при увеличении температуры на каждые 10 °C скорость дегазации может увеличиваться почти вдвое (время дегазации уменьшается наполовину).

П р и м е ч а н ы я
1 Влажность, температура и воздушный поток могут повлиять на образование ЭГ, зависящее от содержания ЭО в изделии после удаления из стерилизатора.
2 Анализы должны иметь информацию о сезонных колебаниях в скорости дегазации, о лабораторных условиях хранения образцов, которые отличаются от условий хранения на складе. При определенных обстоятельствах, которые еще всего могут быть определены опытным путем, может оказаться необходимым до начало дегазация держать образцы при температуре, близкой к наивысшей температуре, при которой изделия хранились во время дегазации.

C.1.5 Отбор образца
При оценке результатов анализа в следующих случаях соблюдайте осторожность:
- когда образцы изделий постоянно отбирают для анализа из стерилизуемой партии вскоре после окончания процесса стерилизации,
- когда образцы изделий или экстрактов из них переносят на место анализа, расположенное удаленно от места стерилизации.
В таких случаях возникает возможность появления ошибок, связанных с распространением результатов определения количества остаточных веществ в образцах на всю партию. Следует экспериментально установить связь между этими условиями.

C.2 Контроль переменных величин
При наличии достаточных экспериментальных данных по диффузионной кинетике остаточных веществ (то есть по скорости улетучивания газообразного ЭО из упаковки для ряда конкретных изделий) изделия могут быть сгруппированы для оценки их качества на основании сходства материалов, процессов производства и применения. Чтобы такая система классификации была действенной, необходимо контролировать переменные условия, рассмотренные выше. Недостача этого контроля может привести к тому, что данные анализа уровней остаточных веществ окажутся применимы лишь к анализируемым образцам.
Условия экстракции для определения остаточного содержания ЭО

Условия экстракции для определения остаточного содержания ЭО изложены в 4.4. Рекомендуемые условия экстракции, которые могут облегчить лабораторные операции, представлены в таблице D.1. Определение понятий исчерпывающей экстракции и экстракции, моделирующей условия применения, приведены в 4.4.6.

Основным принципом при выборе подходящего метода экстракции для определения ЭО является оценка дозы, воздействующей на пациента, для того, чтобы показать соответствие этой дозы требованиям настоящего стандарта, применяя там, где можно, методы, моделирующие применение изделия. Изделия, относящиеся к категории длительного контакта, должны удовлетворять требованиям к изделиям кратковременного контакта, а изделия, относящиеся к категории постоянного контакта, должны удовлетворять требованиям к изделиям длительного и кратковременного контакта, независимо от того, какой способ экстракции используют. Если показано, что содержание остаточных веществ удовлетворяет требованиям для изделий, анализируемых методом исчерпывающей экстракции, нет необходимости проводить дальнейшую оценку изделий методом экстракции, моделирующей условия применения.

Таблица D.1 — Предлагаемые условия экстракции

<table>
<thead>
<tr>
<th>Продолжительность контакта с изделием (см. 4.3)</th>
<th>Постоянный контакт (более 30 сут)</th>
<th>Длительный контакт (от 24 ч до 30 сут)</th>
<th>Кратковременный контакт (менее 24 ч)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Исчерпывающая экстракция</td>
<td>Экстракция, моделирующая условия применения</td>
<td>Экстракция, моделирующая условия применения</td>
<td></td>
</tr>
</tbody>
</table>
Логическое обоснование введения предельных значений

E.1 Область применения (см. раздел 1)

Настоящее приложение содержит пояснения к введению предельных значений остаточного содержания ЭО в изделиях после стерилизации в зависимости от продолжительности контакта. Сюда также включено обоснование введения предельных значений для ЭО и ЭХГ. Для ЭГ не требуется вводить максимально допустимое предельное значение остаточного содержания в изделиях. Если остаточное содержание ЭО контролируется до установленных здесь предельных значений, маловероятно, что в изделии останется биологически значимое количество ЭГ [22], [78], [101].

Для ряда изделий, которые в процессе применения не достигают этих предельных значений, может быть разрешена большая, безопасная для пациента, доза. К таким изделиям относятся экстракорпоральные устройства для очистки крови, для которых максимальная суточная доза ЭО не должна превышать 20 мг, максимальная месячная доза ЭО не должна превышать 60 мг, но максимальная доза на протяжении всей жизни может превысить 2,5 г, оскюнгаторы крови и сепараторы крови, для которых максимальная суточная доза и максимальная месячная доза не должны превышать 60 мг, а максимальная доза ЭО на протяжении всей жизни не должна превышать 2,5 г [см. 4.3].

E.2 Допустимые предельные значения (см. 4.3)

E.2.1 Определение предельных значений остаточного содержания ЭО

E.2.1.1 Основные методы

Пределенные значения остаточного содержания ЭО в медицинских изделиях были установлены с использованием методов, предложенных Американской ассоциацией изготовителей фармацевтической продукции [85]. Эти методы применяют для определения предельных значений остаточного содержания летучих органических примесей в фармацевтических препаратах постоянного применения. Особое внимание было удалено данным по парентеральным и оральным лекарственным формам, так как эти данные более близки к возможному воздействию ЭО на организм при применении медицинских изделий, чем данные по ингаляционным формам. Методика определения остаточных количеств ЭО была модифицирована таким образом, чтобы ее можно было использовать для оценки действия на организм при кратковременном контакте (менее 24 ч) и при длительном контакте (от 24 ч до 30 сут) [19]. Данный подход требует, чтобы при определении предельных значений оценивались все полученные результаты. Этот подход базировался на концепции, в соответствии с которой для определения предельных значений должны быть получены следующие данные: для определения предельных значений при кратковременном контакте — результаты изучения острой токсичности, для определения предельных значений при длительном контакте — результаты изучения подострой токсичности и влияния на репродуктивную функцию, а для изделий постоянного контакта — результаты изучения хронической токсичности и данных по канцерогенности. В случае, когда результаты по острой токсичности не позволяли получить необходимую информацию по воздействию дозы (кроме средних летальных доз) для обоснования объективности предельных значений остаточных веществ, полученных на основе данных по острой токсичности, использовали результаты по токсичности, полученные при изучении подострой токсичности и влияния на репродуктивную функцию.

Для определения предельных значений, воздействующих на организм, использованы коэффициенты безопасности, представленные в таблице E.1, которые менялись в зависимости от продолжительности воздействия. Для определения порога безопасности рассматривают также экстраполяцию данных, полученных на животных, на человека, качество исследования, в результате которого были рассчитаны предельные значения, применяемых этих предельных значений для лиц с низкой массой тела и моделирование применения нескольких изделий на одном индивидууме. Отдельно каждый из этих коэффициентов не задается каким-либо определенными параметрами.

Примечание — Эти коэффициенты установлены для настоящего стандарта во время его утверждения. Технический комитет ИСО/ПК 194 признает, что ко времени следующего пересмотра стандарта при получении новых данных эти коэффициенты могут быть изменены.

Предельное значение L с использованием коэффициентов безопасности вычисляют по формуле

\[L = \frac{D \cdot BW}{SM} \]

gде доза D, (мкг/кг)/сут, может быть одной из следующих:

- NOEL (NOEL) — не оказывая воздействия;
- LOEL (LOEL) — оказывающая минимальное воздействие;
- NOAEL (NOAEL) — при которой не наблюдается вредного воздействия;
ГОСТ Р ИСО 10993-7—2009

ЛОАЕЛ (LOAEL) — при которой наблюдается минимальное вредное воздействие;
ЛД50 (LD50) — средняя летальная;
ЛДЛ0 (LDL0) — минимальная летальная;
ТД50 (TD50) — минимальная токсичная;
ВМ — масса тела человека, кг;
SM — порог безопасности, равный коэффициенту безопасности, умноженному на модифицирующий коэффициент.

Так как ЭО генотоксичен и вызывает опухоли у животных в нескольких исследованиях, рядом согласительных
груп и координирующих организаций во всем мире рассматривается вопрос о канцерогенном действии его на
человека. Для установления предельных значений остаточного содержания ЭО при постоянном воздействии
использовали статистическую количественную оценку данных с точки зрения риска возникновения рака. Так как
оценка риска возникновения рака под воздействием ЭО была выполнена многими группами, данные расчетов
использовали для вычисления предельного значения остаточного содержания ЭО, которое представляет собой
агрегированную сугубую дозу ЭО на протяжении всей жизни, связанную с превышением риска возникновения
рака 1 на 10000 обследуемых, как предложено Ассоциацией изготовителей фармацевтических препаратов, для
ЭО как летучей органической примеси в фармацевтических препаратах постоянного использования [86]. Уровень
риска 10⁻⁴ является средним уровнем среди рекомендуемых или используемых различными координирующими
организациями. Он учитывает риск при использовании стерильных жизненно важных изделий. В самом деле,
общество обычно считает допустимым некоторое увеличение риска, когда речь идет об изделиях, применение
которых привносит пользу для здоровья. Без стерильных изделий станет невозможным использование процедур
и оборудования, спасающих жизнь, и возрастет риск, связанный с внутрибольничными инфекциями.

<table>
<thead>
<tr>
<th>Предельное значение остаточных количеств</th>
<th>Вид исследования</th>
<th>Доза</th>
<th>Коэффициент безопасности¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Постоянное воздействие</td>
<td>Хроническая токсичность (леч.воздействие > 12 мес)</td>
<td>NOEL или NOAEL</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>LOEL или LOAEL</td>
<td>≥ 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOEL или NOAEL</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOEL или LOAEL</td>
<td>≥ 100</td>
<td></td>
</tr>
<tr>
<td>Длительное воздействие</td>
<td>Подострая токсичность (леч.воздействие ≤ 6 мес)</td>
<td>NOEL или NOAEL</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>LOEL или LOAEL</td>
<td>≥ 100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOEL или NOAEL</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOEL или LOAEL</td>
<td>≥ 100</td>
<td></td>
</tr>
<tr>
<td>Кратковременное воздействие</td>
<td>Токсическое воздействие на репродуктивную функцию</td>
<td>NOEL или NOAEL</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>NOEL или NOAEL</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LOEL или LOAEL</td>
<td>≥ 100</td>
<td></td>
</tr>
</tbody>
</table>

¹ Коэффициент безопасности, используемый в действительности, может быть модифицирован на основе оцениваемых данных и профессиональной компетентности. В каждом случае дополнительный модифицирующий коэффициент может варьироваться от 1 до 10. Действительный порог безопасности является произведением коэффициента безопасности и модифицирующего коэффициента.

Предельные значения содержания ЭО в изделиях были установлены на основе рассмотрения ряда данных и нескольких обзоров [16], [21], [26], [29] и [86]. Поскольку возможное воздействие медицинских изделий, стерилизованных ЭО, оценивается при биологических исследованиях, данные по острой токсичности, действию на органы-мишени, по канцерогенезу у животных и по толерантности у человека считаются наиболее подходящими для определения предельных значений остаточного содержания ЭО в изделии для предотвращения возможных вредных эффектов от воздействия ЭО. Дополнительно при оценке потенциальной токсичности ЭО, как обсуждается ниже, следует обратить внимание на моделирование условий применения нескольких изделий одновременно и особенности применения изделий при лечении новорожденных [Environ, 1987; ИСО 10993-1, подраздел 5.1, перечисление b) 5]).
ГОСТ Р ИСО 10993-7—2009

Е.2.1.2 Общее рассмотрение

Данные по острой токсичности и результаты, полученные при многократном введении доз, показывают, что сразу же после введения ЭО легко включается в общий обмен в организме. Анализ данных по средним летальным дозам (LD₅₀) и дозам, не оказывающим действия (NOEL), также позволяет сделать вывод, что действие ЭО в определенные интервалы времени, т. е. при ограниченном воздействии и т. д., сопоставимо с оральным, парентеральным и даже ингаляционном способах введения. Когда увеличивается продолжительность времени воздействия, независимо от органы-мишени может различаться. Предельные допустимые суточные дозы, которые обсуждаются в последующих разделах, отражают эти общие наблюдения.

Е.2.1.2.1 Предельное значение при постоянном воздействии

Предельное значение при воздействии от 30 сут и на протяжении всей жизни составляет 0,1 мг/сут, оно не должно превышать 20 мг для отдельно взятых суток или 60 мг в месяц, либо 2500 мг на протяжении всей жизни. Эти предельные значения получены на основе данных по хронической токсичности и канцерогенности, которые приводятся многими исследователями [24], [99], [62], [63], [80]. Все исследования, кроме описанного Дункельбергом [24], проводились с использованием ингаляционного введения. Приемлемых данных при парентеральном введении не найдено.

В исследовании Дункельберга изучаемую пробу вводили животным орально с помощью одноразовых шприцев, снабженных трубками для введения пробы в желудок, то есть использовали желудочные зонды. Дозы увеличивались, начиная с 2,1 мгкг⁻¹ сут⁻¹. В исследовании вредное воздействие на органы-мишени в хроническом эксперименте выражалось в снижении функции спермы, атрофии скелетных мышц и предраковых повреждениях в желудке, причем были обнаружены раковые повреждения нескольких видов, включая монокумулярную клеточную лейкемию, первичное обнаружение мозга, перитонеальные мезотелиомы, подкожные фибромы, аденомы/карциномы легких, железисто-папиллярные цистоидные гастрогены, лимфомы, аденокарциномы мочевой железы и матки, а также плоскоклеточные карциномы пищевода. При оральным введении были обнаружены только опухоли желудка. При ингаляционном введении обнаружены другие изменения. Эти данные оценивали, используя как коэффициент безопасности, так и статистическую количественную методику оценки риска. Несмотря на оценку ЭО как генотоксического канцерогена, основную на его возможном мутагенном действии и возникновении у животных опухолей некоторых видов, присущих человеку, недостаток данных по биологическому воздействию ЭО на животных и человека, а также отсутствие ясной эпидемиологии, связывающей воздействие ЭО и возникновение рака у человека, препятствует тому, чтобы считать, что статистическая количественная методика оценки риска является единственным средством для расчета предельных значений при постоянном воздействии ЭО. Поэтому для определения прогнозируемых предельных значений при постоянном воздействии применяют как подход, основанный на использовании коэффициента безопасности, так и количественную оценку риска. Сравнение результатов, полученных двумя способами, позволило основой для определения предельных значений при постоянном воздействии [86], [19].

Результирующие данные, которые явились основой для расчета прогнозируемых предельных значений при постоянном воздействии с использованием коэффициентов безопасности, представлены в таблице Е.2.

Таблица Е.2 — Результирующие данные, использованные для определения предельных значений для ЭО при постоянном воздействии

<table>
<thead>
<tr>
<th>Тип данных</th>
<th>Доза LOEL орально (мг/кг)/сут</th>
<th>Доза LOEL ингаляционно (мг/кг)/сут</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хроническая токсичность</td>
<td>2,1 — значение, рассчитанное исходя из введения 7,5 мг/кг дважды в неделю</td>
<td>9,2¹ [Lynch et al., 1983]</td>
</tr>
<tr>
<td>Канцерогенность</td>
<td>[Dunkelberg, 1982]</td>
<td>2,1² [Lynch et al., 1983]</td>
</tr>
</tbody>
</table>

¹) Рассчитано исходя из значения дозы LOEL 50 мг/кг по оценке функции спермы у обезьян вида Cynomolgus в исследовании продолжительностью два года. ЭО вводили по 7 ч в сутки в течение 5 сут в неделю. Предполагалось, что норма вентиляции и масса тела составляли 1,2 м³/сут и 2,7 кг соответственно.
²) Рассчитано исходя из значения дозы LOEL 10 мг/кг при изучении канцерогенеза на крысах и введении ЭО в течение 6 ч в сутки на протяжении 5 сут в неделю. Предполагалось, что норма вентиляции составляла 290 л/сут, а масса тела — 0,5 кг.

Анализ этих данных показывает, что дозы LD₅₀ для ЭО при постоянном воздействии, то есть от 30 сут и на протяжении всей жизни, сравнимы и не зависят от способа введения, несмотря на отсутствие достоверных данных, которые позволили бы оценить влияние при парентеральном введении. Когда в качестве ответной реакции ткани рассматривается возникновение рака, дозу, оказывающую минимальное воздействие LOEL, (мг/кг)/сут, рас-
которую дает применение стерильных изделий.

Количественная оценка риска была взята из опубликованных данных. Как указывает Энниор [28], оценки риска возникновения рака для ЭО были рассчитаны многочисленными группами исследователей. Чтобы получить оценки единицы риска возникновения рака, эти группы, включающие FDA, California DHS, OSHA и USEPA, применяли линеаризированные многостадийные модели и линейно-пропорциональные методы Гайдорн — Коделя, используя опубликованные данные по лейкемии, опухолям мозга, опухолям желудка и мезотелию, полученные при исследованиях на животных. Эти оценки единицы риска возникновения рака варьируются между 0,016 и 0,35 ([мг/кг/сут]⁻¹). Усредняя эти значения, получаем агрегированные суточные дозы на протяжении жизни взрослого человека массой 70 кг в случае, когда риск возникновения рака превышает 1 на 10000, в диапазоне 0,02—0,44 мг/сут со средним значением 0,12 мг/сут. Расчет средней дозы AD, мг/сут, с использованием единицы риска возникновения рака 0,016 ([мг/кг/сут]⁻¹) проводят по формуле

\[AD = \frac{Risk \cdot BW}{UCR} = \frac{0,0001-70}{0,016} = 0,44, \]

где Risk — превышение риска возникновения рака 1/10000;
BW — масса тела взрослого человека 70 кг;
UCR — единица риска возникновения рака, ([мг/кг/сут]⁻¹).

На основе оценки прогнозируемого предельного значения 0,15 мг/сут и средней агрегированной дозе 0,12 мг/сут, вызывающей превышение риска возникновения рака 1 на 10000, было установлено, что доза 0,1 мг/сут будет достаточной для предотвращения вредного воздействия ЭО, возникающего при постоянном применении изделий. Предельное значение при постоянном воздействии учитывает возможное действие в течение очень широкого периода времени от 30 до 25000 сут при продолжительности жизни в 70 лет. Таким образом, в наихудшем случае подлинный риск возникновения рака при воздействии ЭО на уровне, задаваемом этим предельным значением, во многих случаях может быть незначительно меньше чем 1 на 10000, так как это предельное значение предполагает ежедневное воздействие ЭО в течение 70 лет. Изучение применения медицинских изделий, стерилизованных ЭО, позволило сделать вывод, что реальная вероятность возникновения рака при воздействии ЭО из изделий низка (около семи случаев на миллион) [26].

E.2.1.2.2 Предельное значение при длительном воздействии

Предельное значение для воздействия длительностью от 24 ч до 30 сут составляет 2 мг/сут и не превышает 20 мг в любом отдельно взятые сутки или 60 мг в месяцы. В основе этого предельного значения лежат данные по поддержанию токсичности и влиянию на репродуктивную функцию (гератогенность, характеристика репродуктивности, фетотоксичность и т. д.), полученные на нескольких биологических видах. Эти данные приводятся многими исследователями: [38], [109], [11], [78], [98], [80], [41], [45], [54], [33], [96], [97].

В ходе исследования разных продолжительности вплоть до 226 сут при оральном, парентеральном и ингаляционном введениях проявлялись многообразные вредные последствия от воздействия ЭО, в том числе рвота, тремора, раздражение дыхательных путей, повреждение легких, почек, надпочечников, тимуса, печени и желудочно-кишечного тракта, снижение массы тела и замедление роста, ухудшение функции нервной системы, паралич и атрофия мышц (задних конечностей) и анемия. Дозы варьировались от 1 до 100 мг/сут и более. Изучение влияния на репродуктивную функцию включало в себя воздействие на животных в течение 12 недель до оположеренования, воздействие в течение всего времени беременности или его части и воздействие в течение 21 сут после родов. Дозы варьировались от 5 до 150 мг/сут или более. В этих исследованиях ЭО оказывал токсическое действие на материальный организм, аттестационное и фетотоксическое действия, замедляя эмбриональное развитие и вызывал пороки развития шейно-грузного отдела скелета. Этот последний эффект наблюдался только в потомстве мышей, которым вводили ЭО внутрь в дозе 150 мг/сут, что составляет 2/3 LD₅₀ ЭО, равной 260 мг/сут, для самок мышей. Результатирующие данные, на основе которых проводили расчет предельных значений при длительном воздействии, представлены в таблице E.3.
ГОСТ Р ИСО 10993-7—2009

Таблица Е.3 — Результатирующие данные, использованные для определения предельных значений ЭО при длительном воздействии

<table>
<thead>
<tr>
<th>Тип исследования</th>
<th>Доза NOEL, орально</th>
<th>Доза NOEL, парентерально, мгкг⁻¹сут⁻¹</th>
<th>Доза NOEL, ингаляционно</th>
</tr>
</thead>
<tbody>
<tr>
<td>Токсическое действие на репродуктивную функцию</td>
<td>Нет данных</td>
<td>9 [Jones-Price et al., 1982]</td>
<td>132 [Snellings et al., 1982a]</td>
</tr>
</tbody>
</table>

1) Рассчитано исходя из значения дозы NOEL 10 мг/кг при 10—11-недельном изучении при введении мышам ЭО по 6 ч в сут в течение 5 сут в неделю. Предполагается, что норма вентиляции — 43 л/сут, а масса тела — 30 г.
2) Рассчитано исходя из значения дозы NOEL 33 мг/кг при тератологическом изучении беременных крыс, которым вводился ЭО по 6 ч в сутки во время беременности. Продолжительность введения от 6 до 15 сут. Предполагается, что норма вентиляции — 290 л/сут, а масса тела — 0,35 кг.

Анализ данных, полученных при оральном и парентеральном введениях, позволяет прийти к выводу, что не оказывающие действия дозы ЭО для периодов длительного воздействия, то есть от 1 до 30 сут, сравнения независимо от того, является ли это действием на специфический орган-мишень или на репродуктивную функцию, и не зависят от способа введения. Данные, полученные при ингаляционном введении, приводят к аналогичному результату, хотя рассчитанное значение дозы NOEL оказывается меньшим, чем доза NOEL, полученная из данных при оральном и парентеральном введениях. Доза NOEL, полученная при изучении подострой токсичности при ингаляционном введении, оказывается низкой, что обусловлено частичной теми концентрациями, которые использовались в исследовании. При следующей большой по значению концентрации 50 мг/кг, как сообщали исследователи, вредное действие проявлялось только в снижении локомоторной функции, сгорбленной позе при ходьбе и снижении массы яичек. Поскольку данные, полученные при оральном и парентеральном введениях, оказались наиболее применимы к медицинским изделиям, за основу при расчете предельных значений при длительном воздействии была взята наименьшая доза NOEL при парентеральном введении, которая составляла 9 мг/кг при внутривенном тератологическом исследовании, проведенном на кроликах. Расчет L, мг/сут, проводили по формуле

\[
L = \frac{D \cdot BW}{SM} = \frac{9.58}{250} = 0.038
\]

где D — доза, не оказывающая действия, при изучении подострой токсичности или влияния на репродуктивную функцию при парентеральном введении, (мгкг)/сут;

BW — масса тела женщины 58 кг, так как выбранные данные являлись результатом тератологического изучения беременных животных;

SM — порог безопасности, равный 250 (коэффициент безопасности, равный 100, умноженный на модифицирующий коэффициент, равный 2,5), для экстраполяции данных по дозе, не оказывающей воздействия, полученных на животных и отражающих межвидовые различия реакции.

Таким образом, предельное значение, основанное на данных, полученных в исследованиях на животных, обеспечивает приемлемый порог безопасности для возможных вредных эффектов, связанных с длительным воздействием ЭО на взрослого человека массой 58 кг.

E.2.1.2.3 Предельное значение при кратковременном воздействии

Предельное значение при продолжительности воздействия менее 24 ч составляет 20 мг. Предельное значение установлено на основании данных по острой токсичности, полученных для животных нескольких видов. Эти данные приведены многими исследователями [17, 16, 41, 109, 92]. Хотя существует ограниченное количество данных по LD₅₀ или TDL₀ [86], по LD₅₀, так как они были единственными, пригодными для оценки. При отсутствии данных по LD₅₀ включали три значения дозы LD₅₀ в области от 100 до 200 мг/кг. Данные по влиянию значений дозы были получены при изучении острой токсичности на мышах при ингаляционном введении [80]. В этом исследовании 9 из 10 мышей погибли после введения ЭО в концентрации 800 мг/кг (V/V) в течение 4 ч, в то время как после введения ЭО в концентрации 400 мг/кг (V/V) не погибло ни одной мыши из 10. Таким образом, как показывают данные исследований, дозы, которые вызывают биологическое действие в остром эксперименте, а также летальные и нелетальные дозы близки друг к другу и отличаются менее чем в два раза. Данные по дозам LD₅₀
Таблица Е.4 — Результатирующие данные, использованные для определения предельных значений для ЭО при кратковременном воздействии

<table>
<thead>
<tr>
<th></th>
<th>Орально LD₅₀</th>
<th>Внутривенно LD₅₀</th>
<th>Внутрибрюшинно LD₅₀</th>
<th>Подкожно LD₅₀</th>
<th>Ингаляционно LD₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Крыса: 72</td>
<td>Кролик: 175</td>
<td>Кролик: 150</td>
<td>Кролик: 2175</td>
<td>Мышь: 130</td>
<td>От 155 до 773</td>
</tr>
<tr>
<td>Мышь: 360</td>
<td>Крыса: 380</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Кролик: 631</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Рассчитано исходя из LD₅₀ при воздействии на крыс в течение 4 ч в дозах от 800 до 4000 мг/кг (с промежуточными значениями для животных других видов), используя массу тела (BW) 250 г и норму вентиляции 290 л/сут.

Представленные в таблице Е.4.

Анализ этих данных позволяет сделать вывод, что токсичность ЭО при кратковременном воздействии, то есть за период меньше 24 ч, может различаться примерно в три раза и не зависит от способа введения. Так как эти данные отражают средние летальные дозы, а не минимальные летальные и токсичные дозы, в качестве основы для расчета предельных значений при кратковременном воздействии использовали минимальное значение LD₅₀, равное 72 мг/кг для крыс, а не промежуточные значения. Расчет L, мг/кг, проводили по формуле

\[L = \frac{D \cdot BW}{SM} = 72 \cdot 70 = 250 \]

где D — минимальная средняя летальная доза, мг/кг;

BW — масса тела взрослого человека, 70 кг;

SM — порог безопасности, равный 250 для экстраполяции данных, полученных на животных в остром опыте, на человека в случае однократного воздействия. Он учитывает возможность межвидовых различий, изменчивость, присущую человеческой популяции, использование средней, а не действующей летальной дозы (LD₅₀), качество имеющихся в распоряжении данных и пользу, которую дает применение стерильных медицинских изделий.

Таким образом, предельное значение, полученное в исследованиях на животных, обеспечивает превышение порога безопасности для возможных вредных эффектов, связанных с кратковременным воздействием ЭО на взрослого человека массой 70 кг, но меньшей мерой, в 250 раз. Другие явления, связанные с острой токсичностью, такие как гемолиз клеток крови, не возникают, даже если максимальная суточная доза 20 мг введенна в течение нескольких минут [62], [102]. К тому же, это предельное значение допустимо в случае дозы, не оказывающей действия (NOEL), полученной по результатам изучения поддозрительной токсичности и влияния на репродуктивную функцию, в основе которой лежит минимальная доза NOEL при парентеральном введении, равная 9 (мг/кг)/сут или 522 мг/сут, если рассчитывать пропорционально массе женщины 58 кг при многократных введениях.

E.2.1.3 Особые случаи

Существуют особые обстоятельства, например обширные хирургические операции, когда лечение, спасающее жизнь, значительно изменяет отношение к учету риска. Приведенные здесь предельные значения, зависящие от длительности воздействия, основаны на учете преимуществ и недостатков в более критических условиях. Вследствие этого существует диапазон, в котором могут изменяться предельные значения в ситуациях, когда идет борьба за жизнь и невозможно соблюдать требования, установленные к предельным значениям.

В процессе разработки настоящего стандарта было признано, что существуют три особых случая, когда предельные значения, приведенные в 4.3, практически не будут обусловлены ограничениями, связанными с самими изделиями, а также существуют данные, полученные при проведении исследований на человеке, которые указывают, что уровни доз, представленные в 4.3, неприменимы. Были получены данные на пациентов с интраоперационными лигатурами, которые следует учитывать при пересмотре требований по содержанию остаточных веществ в таких изделиях. Признано, что при обработке крови в окислителях или сепараторах польза перевешивает риск применения таких изделий, и это вызывает необходимость разрешить применять для таких изделий допустимые предельные значения, нормируемые для контактов более коротких видов. В случае использования устройств для экстракорпоральной очистки крови в течение длительного времени может возникнуть потребность в превышении
максимальной дозы на протяжении жизни, и это тоже требует рассмотрения.

E.2.1.3.1 Предельные значения для интраокулярных линз

Предельное значение для остаточных веществ в интраокулярных линзах (изделия, имплантированные в глаз) составляет 0,5 мкг ЭО на линзу в день. Это предельное значение не соответствует предельным значениям при постоянном воздействии со средней дневной дозой в 0,1 мг (100 мкг) в день в течение всей жизни. Это особый случай, в котором максимальная действующая доза не должна превышать предельного значения 0,5 мкг/сут на линзу. Такое ограничение необходимо для того, чтобы предотвратить раздражающее действие ЭО на ткани глаза [25], [72], [73], [95].

E.2.1.3.2 Оксигенаторы и сепараторы крови

Предельное значение воздействующей дозы для таких изделий составляет 60 мг за 24 ч. Данные изделия применяют в ряде операций, таких как хирургические операции на открытом сердце. Это предельное значение учитывает острую потребность пациента во время проведения таких процедур, поскольку в него заложено превышение фактора безопасности в 80 раз. В этих обстоятельствах для такого смягчения требований есть основания.

E.2.1.3.3 Устройства для экстракорпоральной очистки крови

Максимально допустимая доза ЭО, составляющая 2,5 г на протяжении жизни, может быть превышена при условии, что не превышены как суточная доза для ЭО, равная 20 мг, и месячная доза 60 мг. Чтобы превысить дозу 2,5 г ЭО на протяжении жизни, пациент, которому проводят очистку крови, должен подвергаться воздействию 2 мг ЭО три раза в неделю и такое воздействие должно продолжаться в течение 8 лет. Если такое воздействие будет продолжаться в течение 70 лет — а никто не подвергается такому лечению так длительно — риск возникновения рака увеличится с одного случая на 10000 до приблизительно одного случая на 1000. Этот дополнительный риск уравновешивается той пользой, которую дает очистка крови для обеспечения жизнедеятельности.

E.2.2 Определение предельных значений для остаточного содержания ЭХГ

E.2.2.1 Основной подход

Предельные значения остаточного содержания ЭХГ в медицинских изделиях устанавливали, используя методологию, изложенную в E.2.1 для ЭО, но не применяя метод количественной статистической оценки риска при постоянном воздействии, который показывает превышение риска возникновения рака один случай на 10000. При проведении биологических исследований на животных ЭХГ не проявил себя как вероятный канцероген. Согласительными группами и законодательными организациями он даже не рассматривается как возможный канцероген для человека. Предельные значения содержания ЭХГ в медицинских изделиях установлены на основании анализа многочисленных литературных данных. Данные по острый токсичности, действию на органы-мишени и хронической токсичности, полученные на животных, посчитаны наиболее пригодными для расчета предельных значений способом, который изложен в E.2.2.2.

E.2.2.2 Общее рассмотрение

Данные по острой токсичности и результаты, полученные при многократном введении доз, показывают, что при кожном, оральным и парентеральном введениях ЭХГ легко включается в обменные процессы. Анализ средних летальных доз (LD50) и доз, не оказывающих воздействия (NOEL), также приводит к выводу, что воздействие ЭХГ в установленные интервалы времени, кратковременное воздействие и т. д., сравнимы при оральном и парентеральном введениях. Согласно данным, полученными при изучении подострой и хронической токсичности, ЭХГ не оказывает более сильного действия при увеличении продолжительности воздействия. Несмотря на то, что не замечено проявление токсичности ЭХГ по отношению к органам-мишеним, установленное действие на органы-мишени может измениться при изменении способа введения и продолжительности воздействия. Предельные значения допустимых суточных доз, которые представлены в последующих разделах, отражают эти общие наблюдения.

E.2.2.2.1 Предельное значение при постоянном воздействии

Предельное значение при воздействии от 30 сут и на протяжении всей жизни составляет 2 мг/сут. Оно не должно превышать 12 мг для отдельно взятых суток или 60 мг в месяцах, либо 50000 мг на протяжении всей жизни. Эти предельные значения получены на основе данных по хронической токсичности и канцерогенности, которые приведены в работах [44], [69], [79]. В этих исследованиях крыс до возраста двух лет получали ЭХГ в питьевой воде. ЭХГ вводили крысам путем подкожных инъекций, по крайней мере, в течение года, а также путем накожных аппликаций крысам и мышам в течение 103—104 недель. Дозы варьировались от 0,086 до 71 (мкг)/сут или более. При этом не наблюдалось увеличения числа случаев возникновения опухолей, связанных с введением ЭХГ, или проявления хронической токсичности, кроме возможного снижения жизнеспособности крыс [44]. Результатирующие данные, послужившие основой для расчета прогнозируемых предельных значений при постоянном воздействии, приведены в таблице E.5.

Анализ данных, полученных при оральном и парентеральном введениях, позволяет прийти к выводу, что дозы ЭХГ, не оказывающие эффекта при постоянном воздействии, т. е. от 30 сут и на протяжении жизни, сравнимы и сходны с теми, которые были получены при изучении подострой токсичности и влияния на репродуктивную функцию. Животные более чувствительны к общетоксическому действию, оказываемому ЭХГ, чем к его способно-
Таблица Е.5 — Результатирующие данные, использованные при определении предельных значений для ЭХГ при постоянном воздействии

<table>
<thead>
<tr>
<th>Вид исследования</th>
<th>Доза NOEL, орально, (мг/кг)/сут</th>
<th>Доза NOEL, парентерально, (мг/кг)/сут</th>
<th>Доза NOEL, нахожно, (мг/кг)/сут</th>
</tr>
</thead>
<tbody>
<tr>
<td>Хроническая токсичность</td>
<td>4 LOEL [Johnson, 1976b]</td>
<td>2,9 — значение, рассчитанное исходя из введения 10 мг/кг/два раза в неделю [Mason et al., 1971]</td>
<td>Нет данных</td>
</tr>
<tr>
<td>Канцерогенность</td>
<td>161) [Johnson, 1976b]</td>
<td>Нет данных</td>
<td>71 — значение, рассчитанное исходя из введения 100 мг/кг пять раз в неделю 1) [NTP,1985]</td>
</tr>
</tbody>
</table>

1) ЭХГ не вызывал возникновения опухолей при самых высоких изученных дозах.

сти, если она существует, вызывать рак.

Минимальная доза, не оказывающая действия при изучении хронической токсичности, составляющая 2,9 (мг/кг)/сут при подкожном введении крысам в течение, по меньшей мере, года, а при изучении возникновения опухолей составляющая 16 (мг/кг)/сут при оральном введении крысам в течение 24 мес, положена в основу расчета предозируемого предельного значения при постоянном воздействии $L_{P, chronic}$, мг/сут, которое рассчитывают по формуле

$$L_{P, chronic} = \frac{D \cdot BW}{SM} = \frac{2.9 \cdot 70}{100} = 2,$$

где D — минимальная доза, не оказывающая действия при изучении хронической токсичности, (мг/кг)/сут;

BW — масса тела взрослого человека, 70 кг;

SM — порог безопасности, равный 100 (фактор безопасности, равный 10, умноженный на модифицирующий фактор 10), отражающий обычную экстраполяцию данных, полученных на животных, на человека; $L_{P, cancer}$, мг/сут, рассчитывают по формуле

$$L_{P, cancer} = \frac{D \cdot BW}{SM} = \frac{16 \cdot 70}{100} = 11,$$

где D — минимальная доза, не оказывающая действия при изучении возникновения опухолей (реально увеличения случаев возникновения опухолей не наблюдалось), (мг/кг)/сут;

BW — масса тела взрослого человека, 70 кг;

SM — порог безопасности, равный 100 (фактор безопасности, равный 100, умноженный на модифицирующий фактор, равный 1), отражающий отсутствие возникновения опухолей при исследованиях на животных.

При изучении этих прогнозируемых предельных значений 2 и 11 мг/сут было установлено, что доза 2 мг/сут будет достаточной для предотвращения вредного действия ЭХГ, возникающего при постоянном воздействии. Таким образом, предельное значение, основанное на данных, полученных в исследованиях на животных, обеспечивает, как минимум, 100-кратный порог безопасности для возможных вредных эффектов, связанных с постоянным воздействием ЭХГ на взрослого человека массой 70 кг.

E.2.2.2.2 Пределное значение при длительном воздействии

Предельное значение при воздействии от 24 ч до 30 сут составляет 2 мг/сут, и не должно превышать 12 мг для отдельно взятых суток или 60 мг в месяц. В основе этого предельного значения лежат данные по изучению подострой токсичности и влияния на репродуктивную функцию (тератогенность), полученные для животных не скольких видов. Эти данные приводятся многими исследователями [6], [83], [11], [5], [109], [20], [46], [47].

При многократных оральных и парентеральных введениях, продолжавшихся различные периоды времени вплоть до 403 сут, ЭХГ оказывал разнообразные вредные эффекты, включая летальный исход (сопровождающийся увеличением массы отдельных органов, явлением мускатной печени, геморрагий в ткани надпочечников, геморрагий в ткани гипофиза, кровоизлияниям в желудочно-кишечный тракт, миокардитами, гиперемией щитовидной железы, застойными явлениями в легких, наблюдающихся в одном исследовании), уменьшение массы тела и замедление роста, увеличение массы мозга, надпочечников, почек, легких и щитовидной железы, небольшое уменьшение и повреждение яичек, рету, уменьшение гемоглобина, гематокритного числа и гематокрита, повреждения печени, эпителиальный гепатоз, гиперплазию костного мозга, а также сдвиг лейкограммы формулы к сторону образования лимфоцитов. Дозы варьировались от 2,7 до 93 (мг/кг)/сут и более. Изучение влияния на репродуктивную функцию включало в себя, в основном, тератологические исследования, в которых ЭХГ вводили на разных стадиях беременности. В этих исследованиях ЭХГ оказывал токсическое действие на материнский
организм, проявлял фетотоксическое действие и в одном из исследований приводил к увеличению пороков развития плода. Последний эффект проявлялся только в потомстве мышей, которым вводили ЭХГ внутриутробно в дозе 120 (мг/кг)/сут. Данный доза соответствует области острой летальности [47]. Результатирующие данные, которые положены в основу расчета предельного значения при длительном воздействии, представлены в Т а б л и ц а Е.6 — Результатирующие данные, использованные для определения предельных значений для ЭХ при длительном воздействии

<table>
<thead>
<tr>
<th>Вид исследования</th>
<th>Доза NOEL, орально (мг/кг)/сут</th>
<th>Доза NOEL, парентерально (мг/кг)/сут</th>
</tr>
</thead>
<tbody>
<tr>
<td>Субхроническая токсичность</td>
<td>13 [Oser et al., 1975]</td>
<td>2,7, что соответствует введению 6,4 три раза в неделю [Lawrence et al., 1971b]</td>
</tr>
<tr>
<td>Изучение влияния на репродуктивную функцию</td>
<td>50 [Courtney et al., 1982]</td>
<td>9 [Jones-Price et al., 1985a]</td>
</tr>
</tbody>
</table>

Таблица Е.6.

Анализ этих данных позволяет прийти к выводу, что не оказывающие действия дозы ЭХГ для периода длительного воздействия, то есть от 1 до 30 сут, сравнимы, независимо от того, является ли это воздействие на специфический орган-мишень или репродуктивную функцию, и не зависят от способа введения. Животные могут оказывать более чувствительными к общему токсическому действию ЭХГ на организм, чем к его способности оказывать вредное влияние на репродуктивную функцию. Минимальную дозу NOEL (не оказывающую действия) 2,7 мг/кг при парентеральном введении, полученную при интраперitoneальным исследовании на крысах, использовали в качестве основы для расчета предельного значения L. Расчет L, мг/сут, проводят по формуле

\[L = \frac{D \cdot BW}{SM} = \frac{2.7 \cdot 70}{100} = 19 \text{ мг/сут}, \]

где \(D \) — минимальная доза, не оказывающая действия при изучении подострой токсичности и влияющая на репродуктивную функцию при парентеральном введении, (мг/кг)/сут; \(BW \) — масса тела взрослого человека, 70 кг; \(SM \) — порог безопасности, равный 100 (фактор безопасности 100, умноженный на модифицирующий фактор 1).

Поскольку рассчитанное предельное значение немного меньше, чем действительное (1,9 мг/сут против 2 мг/сут), считают, что последнее вполне достаточно обеспечивает порог безопасности, если иметь в виду, что ЭХГ не дает увеличения в токсичности при постоянном воздействии по сравнению с длительным воздействием: Таким образом, предельное значение, основанное на данных, полученных в исследованиях на животных, обеспечивает почти 100-кратный порог безопасности для возможных вредных эффектов, связанных с длительным воздействием ЭХГ на взрослого человека массой 70 кг.

Е.2.2.3 Предельное значение при ограниченном воздействии

Предельное значение при продолжительности воздействия менее 24 ч составляет 12 мг. В основе этого предельного значения лежат данные по осторой токсичности, полученные на животных нескольких видов. Эти данные приведены рядом исследователей [90], [109], [57], [58], [59], [93], [69], [108]. Ввиду того, что было рассмотрено и оценено ограниченное количество данных по осторой токсичности по сравнению с данными по средней летальной дозе, они не годились для определения предельного значения. Данные по средним летальным дозам приведены в таблице Е.7.

Анализ данных, представленных в таблице Е.7, позволяет сделать вывод, что токсичность ЭХГ при кратковременном воздействии, то есть менее 24 ч, почти одинакова и не зависит от способа введения. Так как эти данные отражают среднюю летальную дозу, а не минимальные летальные и токсические дозы, минимальное значение \(LD_{50} \), равное 44 мг/кг, полученное для крыс при интраперitoneальном введении; использовали скорее как промежуточное значение, взятое за основу при расчете предельного значения при кратковременном воздействии L. Расчет L, мг/сут, проводят по формуле

\[L = \frac{D \cdot BW}{SM} = \frac{44 \cdot 70}{250} = 12 \text{ мг/сут}, \]

где \(D \) — минимальная средняя летальная доза, мг/кг; \(BW \) — масса тела взрослого человека, 70 кг; \(SM \) — порог безопасности, равный 250, для экстраполяции полученных на животных данных по осторой токсичности на человека при однократном введении. Это учитывает возможность видовых различий, изменчивость, присущую человеческой популяции, тот факт, что использовали среднюю летальную дозу \(LD_{50} \), а не данные по дозе, не оказывающей действия, качество имеющихся в распоряжении данных и ту пользу,
ГОСТ Р ИСО 10993-7—2009

Таблица Е.7 — Результатирующие данные, использованные при определении предельных значений для ЭКГ при кратковременном воздействии (миллиграмм на килограмм)

<table>
<thead>
<tr>
<th>Орально LD₅₀</th>
<th>Внутривенно LD₅₀</th>
<th>Интратератонально LD₅₀</th>
<th>Подкожно LD₅₀</th>
<th>Другое LD₅₀</th>
</tr>
</thead>
<tbody>
<tr>
<td>Крыса: 50</td>
<td>Крыса: 67</td>
<td>Крыса: 44</td>
<td>Крыса: 60</td>
<td>Кожа</td>
</tr>
<tr>
<td>Крыса: 60</td>
<td>Крыса: 80</td>
<td>Крыса: 58</td>
<td>Крыса: 72</td>
<td>Кожа 67,8</td>
</tr>
<tr>
<td>Кролик: 60</td>
<td>Кролик: 84</td>
<td>Кролик: 60</td>
<td>Кролик: 100</td>
<td>Морская</td>
</tr>
<tr>
<td>Крыса: 70</td>
<td>Крыса: 100</td>
<td>Крыса: 63</td>
<td>Крыса: 120</td>
<td>свинка 84</td>
</tr>
<tr>
<td>Крыса: 71,3</td>
<td>Крыса: 110</td>
<td>Крыса: 64</td>
<td>Мышь: 150</td>
<td></td>
</tr>
<tr>
<td>Мышь: 80</td>
<td>Мышь: 120</td>
<td>Крыса: 70</td>
<td>Мышь 95</td>
<td></td>
</tr>
<tr>
<td>Мышь: 81,4</td>
<td>Кролик: 80</td>
<td>Кролик: 84,6</td>
<td>Кролик: 90</td>
<td></td>
</tr>
<tr>
<td>Мышь: 91</td>
<td>Морская свинка: 85</td>
<td>Кролик: 97</td>
<td>Мышь: 97</td>
<td></td>
</tr>
<tr>
<td>Мышь: 95</td>
<td>Морская свинка:85,5</td>
<td>Мышь: 98,4</td>
<td>Мышь: 98,4</td>
<td></td>
</tr>
<tr>
<td>Морская свинка: 110</td>
<td>Мышь: 120</td>
<td>Мышь: 130</td>
<td>Мышь: 130</td>
<td></td>
</tr>
</tbody>
</table>

которую дает использование стерильных изделий.

Таким образом, предельное значение, полученное в исследованиях на животных, обеспечивает превышение порога безопасности для возможных вредных эффектов, связанных с кратковременным воздействием ЭКГ на взрослого человека массой 70 кг, в меньшей мере, в 250 раз. Кроме того, это предельное значение приводится и с точки зрения оценки доз, не оказывающих действия (NOEL), полученных из данных по изучению подростковой и влияния на репродуктивную функцию, исходящих из минимальной дозы NOEL, равной 2,7 (мкг)/сут или 189 мг, по отношению к взрослому человеку массой 70 кг при многократном введении.

Е.2.3 Определение предельных значений остаточного содержания ЭГ

Подробно обсуждается оценка риска, вызванного ЭГ, получена с помощью методов, аналогичных тем, которые использовались для ЭО и ЭКГ. Данная оценка, основанная на изучении острой токсичности на животных [91], [109], [66], [114], [48], [69], [93] и на человеке [91], показывает, что при кратковременном воздействии допустимы дозы от 435 до 588 мг/сут; согласно данным по изучению подростковой токсичности и влияния на репродуктивную функцию, полученным на животных [28], [109], [103], при длительном воздействии допустима доза 30 мг/сут или 900 мг в месяца; согласно данным по хронической токсичности и отсутствию канцерогенного действия при постоянном воздействии допустимая доза составляет 30 мг/сутки или 750 г в течение жизни. Для остаточного содержания ЭГ не требуется установление максимально допустимые предельные значения. Если остаточное содержание ЭО контролируется на уровне установленных в настоящем стандарте предельных значений, то маловероятно, что биологически значимые ЭГ будут присутствовать в изделии [22], [76], [101].

Е.3 Определение остаточного содержания ЭО и ЭКГ [4.4]

Е.3.1 Экстракция из изделий

Критическим параметром в регулировании остаточного содержания ЭО при стерилизации является доза, которую может получить пациент или пользователь при применении изделий, стерилизованных данным способом. Для того, чтобы оценить дозу, полученную пациентом или пользователем, необходимо применять экстракционные методы, которые моделируют условия обычного применения изделия. В некоторых случаях этого можно достигнуть путем заполнения изделия водой, в то время как в других случаях может потребоваться более сложное моделирование, включающее постоянный поток жидкости. Установлено, что если в исчезающей экстракции при определении остаточных веществ, присутствующих в изделии, соблюдаются все требования, тогда экстракция, моделирующая условия применения, может оказаться ненужной.

Используемое понятие исчезающей экстракции включает положение, согласно которому экстракция должна продолжаться до тех пор, пока на последнем этапе полученный выход анализируемого вещества будет составлять менее 10 % выхода анализируемого вещества при первой экстракции. Данное требование не подходит, когда выход при первой экстракции очень мал. Последнее бывает в случае изделий с малым содержанием остаточных веществ или в образцах, из которых анализируемое вещество выделяется с очень малой скоростью. В таких случаях экстракция следует продолжать до тех пор, пока увеличение общего содержания анализируемого вещества, экстрагируемого за несколько этапов, становится аналитически незначимым.

Е.3.2 Аналитические методы

Е.3.2.1 Стабильность ЭО в этаноле

Во время межлабораторного сравнительного изучения метода определения ЭО, описанного в В.6.4 [81], было проведено исследование стабильности контрольных растворов ЭО в этаноле. Контрольные разво-
ры ЭО в концентрациях 25, 50 и 100 мкг/мл были приготовлены и хранились как при температуре холодильной камеры, так и при температуре 40 °С. Эти контрольные растворы анализировали в разные периоды времени в течение 6 нед. Данное исследование показало, что за 2 нед при температуре 40 °C концентрация ЭО снижалась до 70 % исходной концентрации для контрольных растворов концентрацией 50 и 100 мкг/мл. В случае хранения при температуре холодильной камеры (плюс 5 °C) вплоть до 60 сут все контрольные растворы оставались стабильными в пределах 10 % исходной концентрации.

E.3.2.2 Стабильность ЭКГ

Перед межлабораторным сравнительным изучением ЭКГ (и ЭГ) 11 лабораторий участвовали в изучении стабильности контрольных растворов ЭКГ. Водные контрольные растворы ЭКГ были приготовлены в одной лаборатории и переданы всем участникам эксперимента. До прибытия на место анализа контрольные растворы хранились при температуре холодильной камеры. Эти контрольные растворы анализировали, применяя различные типы колонок, в разные периоды времени: сразу после доставки, спустя неделю и через 2, 3, 4, 8 и 12 недель после доставки. Изучение показало, что в течение первых двух недель концентрация значительно не изменялась. Было сделано заключение, что контрольные растворы ЭКГ стабильны в случае хранения при температуре холодильной камеры в течение, по крайней мере, 14 сут.

E.3.2.3 Линейность стандартной кривой

В идеале методика, представленные в настоящем стандарте, должны быть применимы ко всей области концентраций, необходимых для оценки соответствия предельным значениям, установленным в 4.3. Однако во время межлабораторного сравнительного изучения, проведенного с использованием этих методик, линейная область для ЭО при анализе соответствовала концентрациям от 2 до 50 мкг/мл, а линейный диапазон при анализе ЭКГ соответствовал концентрациям от 3 до 15 мкг/мл. На основании личного опыта участников этого международного исследования линейная область этих аналитических систем может быть без ущерба расширена до концентрации 100 мкг/мл для ЭО и ЭКГ. В настоящий момент отсутствуют данные для решения вопроса, могут ли области линейности быть расширены в сторону более низких концентраций стандартных растворов.

E.3.3 Данные анализа и их интерпретация [4.4.7]

В 4.4.7 представлена соответствующая обработка данных, которая дает возможность аналитику вычислить уровни остаточных веществ в изделии и на основании этого — возможную дозу, воздействующую на пациента. Это позволяет выпускать продукцию в соответствии с требованиями, перечисленными в 4.3.
Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам

<table>
<thead>
<tr>
<th>Обозначение ссылочного международного стандарта</th>
<th>Обозначение и наименование соответствующего национального стандарта</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИСО 10993-1:1992</td>
<td>ГОСТ Р ИСО 10993-1—2009 Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 1. Оценка и исследования</td>
</tr>
<tr>
<td>ИСО 10993-3:1992</td>
<td>ГОСТ Р ИСО 10993-3—2009 Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 3. Исследования генотоксичности, канцерогенности и токсического действия на репродуктивную функцию</td>
</tr>
<tr>
<td>ИСО 10993-10:1995</td>
<td>ГОСТ Р ИСО 10993-10—2009 Изделия медицинские. Оценка биологического действия медицинских изделий. Часть 10. Исследования раздражающего и сенсибилизирующего действия</td>
</tr>
</tbody>
</table>
Bibliography

[40] Improved detection and separation of glycols and ethylene oxide residues using GC. (Bulletin 789), Supelco, Inc.; 1980
[41] JACOBSON, K., HACKLEY, E. and FEINSILVER, L. The toxicity of inhaled ethylene oxide and propylene oxide vapors. AMA Arch. Ind. Health. 13 1956; pp. 237 — 244
[52] KROES, R., BOCK, B. and MARTIS, L. Ethylene oxide extraction and stability in water and blood. Personal communication to the AAMI Committee, Jan 1985
[58] LAURENCE, W., ITOH, K., TURNER, J. and AUTIAN, J. Toxicity of ethylene chlorohydrin II: Subchronic toxicity and special tests. J. Pharm. Sci. 60(8) 1971b; pp. 1163 — 1168

MANIUS, G.J. Determination of ethylene oxide, ethylene chlorohydrin, and ethylene glycol residues in ophthalmic solution at proposed concentration limits. J. Pharm. Sci. 68(12) 1979; pp. 1547 — 1549

MASON, M., CATE, C. and BAKER, J. Toxicology and carcinogenesis of various chemicals used in the preparation of vaccines. Crit. Toxicol. 4(2) 1971; pp. 185 — 204

NORTHUP, S., WEINCKOWSKI, D., MARTIS. L. and DARBY, T. Toxicity caused by acute and subacute intravenous administration of ethylene oxide in the rat. J. Environ. Pathol. Toxicol. 5 1981; pp. 617 — 623

National Toxicology Program. Toxicology and Carcinogenicity Studies of 2-Chloroethanol (Ethylene Chlorohydrin) (CAS. No. 107-07-03) in F344/N Rats and Swiss CD-1 Mice (Dermal Studies) (NTP TR275, NIH Publication 86-2531). Research Triangle Park, NC: NTP, 1985

PATEL, A. (unpublished data presented to ISONC 1994/WG 11 by A. Patel, Alcon Laboratories, Inc. and his colleagues at the WG meeting in Minneapolis, MN, Sept. 1993)

Ключевые слова: медицинские изделия, лабораторные животные, испытания на животных, этиленоксид, этиленхлоргидрин, экстракция, исчерпывающая экстракция, хроматография