ИЗДЕЛЯ МЕДИЦИНСКИЕ
ОЦЕНКА БИОЛОГИЧЕСКОГО ДЕЙСТВИЯ
МЕДИЦИНСКИХ ИЗДЕЛИЙ
Часть 3
Исследования генотоксичности, канцерогенности
и токсического действия на репродуктивную
функцию

ISO 10993-3:2003
Biological evaluation of medical devices — Part 3: Tests for genotoxicity,
carcinogenicity and reproductive toxicity
(IDT)

Издание официальное
Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН Аутономной некоммерческой организацией «Институт медико-биологических исследований и технологий» (АО «ИМБИИТ»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 422 «Оценка биологического действия медицинских изделий»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 6 августа 2009 г. № 280-ст

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты Российской Федерации, сведения о которых приведены в дополнительном приложении D

5 ВЗАМЕН ГОСТ Р ИСО 10993.3—99

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2009

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии
Содержание

1 Область применения .. 1
2 Нormативные ссылки ... 1
3 Термины и определения .. 2
4 Методы изучения генотоксичности .. 2
 4.1 Общие положения .. 2
 4.2 Стратегия .. 3
 4.3 Подготовка проб ... 3
 4.4 Методы исследования .. 3
 4.4.1 Генотоксичность in vitro ... 3
 4.4.2 Генотоксичность in vivo .. 3
5 Методы изучения канцерогенности ... 4
 5.1 Общие положения .. 4
 5.2 Стратегия .. 4
 5.3 Приготовление проб ... 4
 5.4 Методы исследования .. 4
6 Методы изучения токсического воздействия на развитие и репродуктивную функцию .. 5
 6.1 Общие положения .. 5
 6.2 Стратегия .. 5
 6.3 Приготовление проб ... 5
 6.4 Методы исследования .. 5
7 Отчет об исследовании .. 6
Приложение А (справочное) Система исследования клеточной трансформации 7
Приложение Б (справочное) Обоснование систем исследования 8
Приложение С (справочное) Роль изучения канцерогенности имплантатов 9
Приложение D (справочное) Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам .. 11
Библиография .. 12
Введение

Настоящий стандарт распространяется на методы определения специфических биологических эффектов и связанные с ними максимально чувствительные тесты. Интерпретация результатов и их значение для здоровья человека не рассматриваются в настоящем стандарте.

Потенциальная опасность должна оцениваться в каждом конкретном случае с учетом влияния таких факторов, как степень воздействия, специфические различия, механические и физические аспекты, поскольку полученные результаты не всегда равнозначны.

Стандарты серии ИСО 10993 являются руководящими документами для прогнозирования и исследования биологического действия медицинских изделий на стадии выбора материалов, предназначенных для их изготовления, а также для исследований готовых изделий.

В серию ИСО 10993 входят следующие части под общим названием «Оценка биологического действия медицинских изделий»:

- Часть 1 — Оценка и исследования;
- Часть 2 — Требования к обращению с животными;
- Часть 3 — Исследования генотоксичности, канцерогенности и токсического действия на репродуктивную функцию;
- Часть 4 — Исследование изделий, взаимодействующих с кровью;
- Часть 5 — Исследование на цитотоксичность: методы in vitro;
- Часть 6 — Исследование местного действия после имплантации;
- Часть 7 — Остаточное содержание этиленоксида после стерилизации;
- Часть 9 — Основные принципы идентификации и количественного определения потенциальных продуктов деградации;
- Часть 10 — Исследование раздражающего и сенсибилизирующего действия;
- Часть 11 — Исследование общетоксического действия;
- Часть 12 — Приготовление проб и стандартные образцы;
- Часть 13 — Идентификация и количественное определение продуктов деградации полимерных медицинских изделий;
- Часть 14 — Идентификация и количественное определение продуктов деградации изделий из керамики;
- Часть 15 — Идентификация и количественное определение продуктов деградации изделий из металлов и сплавов;
- Часть 16 — Моделирование и исследование токсикокинетики продуктов деградации и вымываия;
- Часть 17 — Установление пороговых значений для вымываемых веществ;
- Часть 18 — Исследование химических свойств материалов;
- Часть 19 — Исследование физико-химических, морфологических и топографических свойств материалов;
- Часть 20 — Принципы и методы исследования иммунотоксического действия медицинских изделий.
ИЗДЕЛИЯ МЕДИЦИНСКИЕ
ОЦЕНКА БИОЛОГИЧЕСКОГО ДЕЙСТВИЯ МЕДИЦИНСКИХ ИЗДЕЛИЙ

Часть 3
Исследования генотоксичности, канцерогенности и токсического действия на репродуктивную функцию

Medical devices. Biological evaluation of medical devices.
Part 3. Tests for genotoxicity, carcinogenicity and reproductive toxicity

Дата введения — 2010—07—01

1 Область применения

Настоящий стандарт определяет стратегию для установления риска и исследования медицинских изделий для изучения специфического биологического действия:
- генотоксичности;
- канцерогенности;
- токсического действия на репродуктивную функцию и развитие.

Настоящий стандарт применяется для оценки медицинского изделия, потенциальные генотоксичность, канцерогенность или токсическое действие на репродуктивную функцию которого являются установленными.

Примечание — Руководство по выбору тестов приведено в ИСО 10993-1.

Требования настоящего стандарта являются рекомендуемыми в области выбора методов испытания.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ИСО 10993-1:1997* Оценка биологического действия медицинских изделий. Часть 1. Оценка и исследования
ИСО 10993-2:1992* Оценка биологического действия медицинских изделий. Часть 2. Условия содержания животных
ИСО 10993-6:1994* Оценка биологического действия медицинских изделий. Часть 6. Исследование местного действия после имплантации
ИСО 10993-12:2002* Оценка биологического действия медицинских изделий. Часть 12. Приготовление проб и стандартные образцы
ИСО 10993-18 Оценка биологического действия медицинских изделий. Часть 18. Химическая характеристика материалов
ОЭСД 4141) Изучение токсического действия на предродовое развитие
ОЭСД 415 Изучение токсического действия на репродуктивную функцию в пределах поколения
ОЭСД 416 Изучение токсического действия на репродуктивную функцию в пределах двух поколений
ОЭСД 421 Сирингиновый тест токсического действия на репродуктивную функцию и развитие
ОЭСД 451 Исследования канцерогенности
ОЭСД 453 Комбинированные исследования хронической токсичности/канцерогенности

1) Организация Экономического сотрудничества и Развития.
ГОСТ Р ИСО 10993-3—2009

ОЭД 471 Тест бактериальной обратной мутации
ОЭД 473 Тест хромосомной аберрации в млекопитающих in vitro
ОЭД 476 Тест клеточной генной мутации в млекопитающих in vitro

3 Термины и определения

В настоящем стандарте применены термины по ИСО 10993-1, 10993-12, а также следующие термины с соответствующими определениями:

3.1 изучение канцерогенности (тест на канцерогенность): Тест, служащий для определения потенциальной онкогенной опасности изделий, материалов и/или экстрактов из них при однократном воздействии в течение значительной части жизненного цикла экспериментального животного.

Примечание — Подобные тесты могут быть рассчитаны на изучение как хронической, так и онкогенной опасности в рамках одного эксперимента. Если хроническая канцерогенность изучается в рамках одного эксперимента, необходима острожность при определении параметров эксперимента, особенно при выборе дозировки. Этого гарантирует, что конечная смертность от хронической/сухой канцерогенности не превышает статистической оценки животных, которые выживают до запланированного окончания эксперимента (т. е. нормальная продолжительность жизни).

3.2 изделие, накапливающее энергию: Устройство, предназначенное для терапевтического действия или диагностической функции путем аборбции электромагнитного, ионного или ультразвукового излучения.

Примечание — Это не относится к устройствам, вырабатывающим электрический ток, так как электрокуттеры, водители ритма или функциональные электростимуляторы.

3.3 тест на генотоксичность: Тест, в котором используют клетки млекопитающих и других животных, а также бактерии, дрожжи или грибы для определения генных мутаций, изменений хромосомной структуры или других изменений генов или ДНК, вызванных изучаемыми материалами.

Примечание — К этому определению могут быть также отнесены тесты на целостном организме.

3.4 максимально вносимая доза, МД: Максимальное количество имплантируемого материала, которое экспериментальное животное переносит без негативных физических эффектов.

3.5 изучение воздействия на репродуктивную функцию и развитие: Методы, служащие для оценки потенциального воздействия изучаемых материалов на репродуктивную функцию, эмбриогенез (тератогенность), пренатальное и постнатальное развитие.

4 Методы изучения генотоксичности

4.1 Общие положения

Перед принятием решения о проведении исследования на генотоксичность необходимо принять во внимание ИСО 10993-1, а также химическую характеристику материалов (ИСО 10993-18). Обоснование программы исследований с учетом всех значимых факторов должно быть документально зафиксировано.

ИСО 10993-1 обозначает условия, при которых потенциальная генотоксичность является значимым риском при общей оценке биологической безопасности (см. ИСО 10993-1:1997, таблица 1). Исследование на генотоксичность, тем не менее, не является обязательным для медицинских изделий и их компонентов, изготовленных только из материалов, проявивших себя как не обладающие генотоксичностью. Исследование на генотоксичность требуется, если оценка состава материалов готового медицинского изделия показывает возможное наличие соединений, которые могут вступить во взаимодействие с генетическим материалом, или если химический состав медицинского изделия не известен. В таких случаях должен быть определен генотоксичный потенциал означенных химических компонентов с учетом комбинации их совместного воздействия, что предпочтительнее проведения исследований на генотоксичность на материале или медицинском изделии в целом.

В случае, когда необходимо оценить генотоксическое действие медицинского изделия, следует провести серию тестов in vitro. Эта серия должна включать в себя два теста, если проводится 4.2.1.2, который использует образец лимфоциты мышей с учетом номера колонии и определением размера, или три теста, если проводится 4.2.1.1. При проведении тестов по меньшей мере два испытаия, исследующие разные конечные точки, должны использовать клетки млекопитающих.
4.2 Стратегия

4.2.1 Исследование на генотоксичность проводится на основании первоначального решения о проведении исследования в соответствии либо с вариантом 1 (4.2.1.1), либо с вариантом 2 (4.2.1.2).

4.2.1.1 Вариант 1

а) исследование генных мутаций на бактериях (OECD 471) и

б) исследование генных мутаций на клетках млекопитающих (OECD 476) и

в) исследование кластогенности на клетках млекопитающих (OECD 473).

4.2.1.2 Вариант 2

а) исследование генных мутаций на бактериях (OECD 471) и

б) исследование генных мутаций на клетках млекопитающих (OECD 476), конкретно — образец лимфоиды мыши с учетом номера колонии и определением размера для исследования обеих конечных точек (кластогенности и генных мутаций).

4.2.2 При отрицательных результатах всех тестов in vitro, проведенных в соответствии с 4.2.1, дальнейшие испытания генотоксичности на животных обычно не обоснованы и не должны проводиться во избежание неподобающего использования животных.

Тесты in vivo проводятся в соответствии с ИСО 10993-2.

4.2.3 При положительных результатах любого из тестов in vitro проводятся тесты in vivo на мутагенность (см. 4.2.4) или предполагается, что соединение мутагенно.

4.2.4 Любой тест in vivo выбирается на основании наиболее подходящей точки, определенной тестами in vitro. Необходимо продемонстрировать, что тестируемое вещество достигло органа-мишени. Если это невозможно, то может потребоваться второй тест in vivo на другом органе-мишени для подтверждения отсутствия генотоксичности in vivo.

Обычно используемые тесты in vivo:

а) микроаэробный тест на крысах (OECD 474) или

б) анализ метафаз в костном мозге грызунов (OECD 475) или

в) внеплановый тест синтеза ДНК на клетках печени млекопитающих (OECD 486).

Выбор наиболее подходящей системы исследований должен быть обоснован и отражен документально.

4.2.5 Если для изучения генотоксичности используются другие системы исследований in vivo в целях получения дополнительной информации, причина должна быть обоснована и отражена документально.

4.3 Подготовка проб

4.3.1 При проведении исследований генотоксичности на материале или на медицинском изделии в целом приготовление проб проводят в соответствии с ИСО 10993-12. Тестирование поддерживают экстракты, усиленные экстракты или отдельные химические соединения материала/медицинского изделия. Наибольшая тестируемая концентрация должна быть в пределах указаний OECD. Если используются условия усиленного экстрагирования, необходимо убедиться, что это не изменяет химических характеристик.

4.3.2 Соответствующий растворитель выбирают на основании его совместимости с системой исследования и его способности максимально экстрагировать материал или медицинское изделие. Причина выбора растворителя должна быть отражена документально.

4.3.3 При соответствующей ситуации используются две подходящие экстрагирующие среды, одна из которых является полярным растворителем, а вторая — неполярным или жидкостью, соответствующей характеру и использованию медицинского изделия, при этом обе должны быть совместимы.

4.4 Методы исследования

4.4.1 Генотоксичность in vitro

Методы тестирования in vitro выбирают из руководства OECD по испытанию химических соединений.

Предпочтительны тесты OECD 471, OECD 473, OECD 476, OECD 479 и OECD 482. При планировании и выборе исследований необходимо учитывать, что некоторые материалы или вещества могут повлиять на исследование, например антибиотики и антисептики. При соответствующей ситуации обоснование решения должно быть отражено документально.

4.4.2 Генотоксичность in vivo

Методы тестирования in vivo выбираются из руководства OECD по испытанию химических соединений.
ГОСТ Р ИСО 10993-3—2009

Примечание — В последнее время были разработаны тестовые системы с применением трансгенных животных, предназначенные для исследований генотоксичности. Эти методики могут быть полезны для испытания медицинских изделий, но на момент издания настоящего стандарта использование этих тестов еще не было утверждено. Описание тест-систем с применением трансгенных животных приведено в библиографии, в литературе по трансгенным животным.

5 Методы изучения канцерогенности

5.1 Общие положения

Дополнительные решения о проведении исследования канцерогенности необходимо принять во внимание ИСО 10993-1 и ИСО 10993-18. Решение о проведении исследования должно быть принято на основании оценки риска канцерогенеза, вызываемого использовании медицинского изделия. Исследование на канцерогенность не должно проводиться, если риск был адекватно оценен или сокращен без получения новых результатов канцерогенных исследований.

Примечание — Существуют подходящие системы исследования клеточной трансформации in vitro, которые могут быть использованы для предварительной оценки канцерогенности. Исследования клеточной трансформации пока не были описаны в международных стандартах. Дополнительная информация о системах исследования клеточной трансформации содержится в приложении A.

5.2 Стратегия

5.2.1 При отсутствии доказательств, исключающих риск канцерогенности необходимо учитывать следующие ситуации, при которых необходимо исследование канцерогенности:

a) резорбирующиеся материалы или изделия, для которых время резорбции превышает 30 дней, если нет значительных и адекватных сведений о их воздействии на человека;

b) материалы и изделия, постоянный или совокупный контакт которых с внутренними средами организма и/или его полостями превышает 30 дней, за исключением тех, о которых имеются достоверные и адекватные сведения о результатах их контакта с организмом человека.

Исследования канцерогенности генотоксичных материалов не являются научно обоснованными. Канцерогенная опасность генотоксичных материалов должна предполагаться, и риски соответственно следует учитывать.

5.2.2 Если хроническая токсичность и канцерогенность были рассмотрены в соответствии с ИСО 10993-1 и тестирование было признано необходимым, исследования будут проводиться в соответствии с OECD 453, если возможно.

5.2.3 Если в соответствии с ИСО 10993-1 рассматривалось только исследование канцерогенности и тестирование было признано необходимым, исследования будут проводиться в соответствии с OECD 451.

5.2.4 Для испытания медицинских изделий достаточно одного вида животных. Выбор вида должен быть обоснован и отражен документально.

Примечание — В последнее время были разработаны тестовые системы с применением трансгенных животных, предназначенные для исследований канцерогенности, но на момент издания данной части настоящего стандарта использование этих тестов для медицинских изделий еще не было утверждено. Описание тест-систем с применением трансгенных животных содержится в библиографии, в литературе по исследованиям с применением трансгенных животных в качестве альтернативы исследованиям канцерогенности в течение продолжительности жизни.

5.3 Приготовление проб

Приготовление проб проводят в соответствии с ИСО 10993-12. По возможности, испытание должно подвергаться изделие в готовой для применения форме.

5.4 Методы исследования

5.4.1 Если тесты на канцерогенность необходимы как часть оценки биологической безопасности, эти исследования проводят с определенными химическими веществами или характерными экстрактами из медицинских изделий. Проведение имплантационных изучений (см. приложение С) должно быть обосновано, и их роль в оценке человеческого риска должна быть описана и отражена документально.
6 Методы изучения токсического воздействия на развитие и репродуктивную функцию

6.1 Общие положения

6.1.1 До принятия решения о проведении исследований токсического воздействия на развитие и репродуктивную функцию необходимо принять во внимание ИСО 10993-1 и ИСО 10993-18. Решение о проведении исследования должно быть принято на основании оценки риска токсического воздействия на развитие и репродуктивную функцию, вызываемого использованием медицинского изделия.

6.1.2 Необходимость исследования токсического воздействия на репродуктивную функцию отсутствует для резорбирующихся медицинских изделий или медицинских изделий, содержащих вымываемые компоненты, в случае существования адекватных и обнадеживающих данных исследований по абсорбции, метаболизму и распределению в организме или по отсутствию токсического действия на репродуктивную функцию всех компонентов, обнаруженных в экстрактах материалов или медицинских изделий.

6.1.3 Нет необходимости проводить исследования токсического воздействия на развитие и репродуктивную функцию, если оценка допустимого биологического риска медицинского изделия учитывает, что токсическое воздействие на развитие и репродуктивную функцию было исключено.

6.2 Стратегия

При отсутствии доказательств исключения риска токсического воздействия на развитие и репродуктивную функцию, необходимо рассмотреть исследования токсического воздействия на развитие и репродуктивную функцию. Такие исследования могут проводиться на медицинских изделиях следующих видов:

а) изделия длительного или постоянного контакта с возможным прямым контактом с репродуктивными тканями или эмбрионом/плодом;

б) изделия, накапливающие энергию;

в) рассасывающиеся материалы или растворяющиеся субстанции.

При необходимости тестирования следует начинать с OECD 421 для получения первичной информации о возможном влиянии на репродуктивную функцию и/или развитие. Положительные результаты этих тестов полезны для первичной оценки опасности и помогают при принятии решения о необходимости и времени дополнительных исследований.

Если необходимы дополнительные исследования, они проводятся в соответствии с OECD 414, OECD 415 или OECD 416 в зависимости от необходимости.

6.3 Приготовление проб

6.3.1 Приготовление проб проводят в соответствии с ИСО 10993-12. По возможности, испытуемую модель подвергают в здоровой форме.

6.3.2 В случае испытания изделий, накапливающих энергию, все тело животных подвергают облучению, при этом доза облучения репродуктивных органов должна быть увеличена в несколько раз по сравнению с прогнозируемой при применении на человеке.

6.3.3 Наибольшая доза, используемая на животных моделях, является либо максимально выносимой дозой, либо обусловлена физическими ограничениями экспериментального животного. Эта доза должна в несколько раз превышать максимальную прогнозируемую при применении на человеке (по массе и/или площади поверхности дозы на килограмм модели).

Тестирование in vivo проводят в соответствии с ИСО 10993-2.

6.4 Методы исследования

6.4.1 Оценка эффекта на первом поколении (F1) и даже на втором поколении (F2) должна быть проведена в соответствии с OECD 414, OECD 415 или OECD 416 и OECD 421. Поскольку руководство OECD не было рассчитано на медицинские изделия, необходимо учитывать следующие изменения:
ГОСТ Р ИСО 10993-3—2009

- доза (в случае изделий, накапливающих энергию);
- способ применения (имплантация, парентеральное, другое);
- экстрагирующая среда (водные и неводные экстракты);
- время воздействия (повышенный уровень химических веществ в крови во время органогенеза, когда возможно).

Примечание — В зависимости от предполагаемого использования на человеке и характеристик материала могут потребоваться пери-/постнатальные исследования.

6.4.2 Если информация, полученная в результате других исследований, указывает на наличие потенциального воздействия на мужскую репродуктивную систему, необходимо проведение соответствующих исследований токсического воздействия на мужскую репродуктивную систему.

Примечание — В последнее время разработаны методики для оценки влияния на репродуктивную функцию in vitro. Они могут быть полезны в качестве предварительных испытаний при изучении токсического действия на репродуктивную функцию и развитие. Ссылки на тестовые системы in vitro для изучения влияния на репродуктивную функцию содержатся в библиографии, в литературе по исследованиям токсического воздействия на развитие и репродуктивную функцию.

7 Отчет об исследовании

7.1 Отчет об исследовании должен включать в себя по меньшей мере следующие детали:
a) описание материала и/или медицинского изделия, включая предполагаемое применение (например, химический состав, обработка, кондиционное состояние и обработка поверхности);
b) описание и обоснование методов исследования, условий исследования, материалов исследования и процедуру исследования;
c) описание аналитических методов, включая границы измерения и количественные показатели;
d) заявление о соответствии требованиям норм лабораторной практики;
e) результаты исследований, включая краткое изложение;
f) статистические методы;
g) интерпретация и обсуждение результатов.

7.2 Если применимо в данном случае, в отчет включаются другие детали согласно указаниям соответствующего OECD.
Система исследования клеточной трансформации

Системы исследования клеточной трансформации могут быть использованы для предварительного тестирования (скрининга) на канцерогенность.

Существуют данные, что двухэтапные анализы клеточной трансформации могут определить наличие негенотоксичных канцерогенов, но на данный момент не представляется возможным сделать вывод, что все негенотоксичные канцерогены могут быть выявлены с помощью анализов клеточной трансформации. Таким образом, системы исследования клеточной трансформации не могут использоваться как альтернатива исследованиям влияния канцерогенности на продолжительность жизни по меньшей мере на одном соответствующем виде грызунов.
ГОСТ Р ИСО 10993-3—2009

Приложение В
(справочное)

Обоснование систем исследования

В.1 Исследования генотоксичности

Основной функцией исследований генотоксичности является изучение с использованием тестируемых клеток и организмов потенциала изделий к индукции генетических изменений в человеке, которые могут передаваться заботылыми клетками будущим поколением. Научные данные обычно поддерживаются гипотезу, что повреждение ДНК в соматических клетках является критическим моментом в зарождении рака. Такое повреждение может привести к мутациям, и исследования на обнаружение генотоксичности активности также могут определять химикаты, потенциально ведущие к канцерогенезу. Таким образом, некоторые исследования полезны для изучения предполагаемой канцерогенности.

Если в классических исследованиях токсичности можно наблюдать несколько подходящих параметров или конечных точек в рамках одного эксперимента, это не происходит в генетической токсикологии. Разнообразие генетических конечных точек обычно препятствует обнаружению более чем одной из них в рамках одной системы исследования.

В руководстве к исследованиям упоминаются примерно пятнадцать различных исследований. Выбор наиболее подходящего из них для соответствия определенному требованию зависит от нескольких факторов. Также могут быть обнаружены тип генетического изменения или метаболические возможности системы исследования.

Здесь надо подчеркнуть, что не существует международного соглашения о лучших комбинациях исследований для определенной цели, хотя были сделаны попытки к гармонизации выбора наиболее подходящих исследований. Также полезно отметить, что в использовании или разработках существуют другие исследования мутагенности, которые, несмотря на отсутствие руководства OECD, также могут быть полезны. Необходимо отметить существование договора ICH/S2B по фармацевтическим препаратам.

Химикаты, вступающие в контакт с ДНК, вызывают повреждения ткани, которые под влиянием различных процессов восстановления могут привести к изменениям на генном уровне, например генной или точечной мутацией, малым устранениям, митотическим рекомбинациям или различным хромосомным изменениям, видимым на микроскопическом уровне, и существуют тесты для исследования всех этих явлений.

Настоящие краткосрочные исследования, разумеется, не могут имитировать все стадии канцерогенного процесса и часто предполагают только обнаружение момента, ведущего к стадии зарождения, т. е. возможности индукции мутагенного или кластерного повреждения ДНК. Таким образом, основная ценность таких исследований — в их способности определять субстанции, которые могут при определенных условиях воздействия либо вызвать рак путем преимущественно генотоксического механизма, либо индуцировать первичную фазу канцерогенного процесса. Сложность канцерогенного процесса — по сравнению с относительной простотой краткосрочных исследований, — делает очевидным, что, несмотря на предоставляемую таковыми полезную качественную информацию, заключения в отношении канцерогенной деятельности необходимо делать со значительной осторожностью.

Так как одно исследование не способно определить мутагены и канцерогены в организме клеточных и допустимых уровнях точности и воспроизводимости, обычной научной практикой является применение этих исследований «серийными» («батареями»). Первичная информация по мутагенности субстанции может быть получена с помощью исследований, измеряющих генную мутацию и хромосомные повреждения. Так как отдельные процедуры требуются для исследования этих конечных точек, необходима серия тестов.

В.2 Исследования канцерогенности

Целью долгосрочного исследования канцерогенности является контроль экспериментальных животных в течение большей части их жизни на развитие неопластических повреждений ткани в условиях воздействия различных доз тестируемой субстанции, достоверной соответствующим путем. Такое исследование требует тщательного планирования и документации плана эксперимента (см. приложение С), высокого качества патологии и объективного статистического анализа.

В.3 Исследования токсического воздействия на репродуктивную функцию и развитие

Исследование токсического воздействия на репродуктивную функцию охватывают сферы размножения, плодовитости и тератогенности. Было обнаружено, что многие субстанции могут влиять на плодовитость и размножение, часто скрытым образом, без других признаков токсичности. Плодовитость может быть заторможена у мужчин, и у женщин, с результатом от немного сниженной репродуктивной способности до полной стерильности.

Тератогенность имеет дело с негативным влиянием субстанции на развивающийся эмбрион и плод. От токсического воздействия на репродуктивную функцию зависит здоровье человечества. Разрабатываются методики исследований, и идентификация отдельных тестов, охватывающих все аспекты репродуктивной токсикологии, является многообещающей.
ГОСТ Р ИСО 10993-3—2009

Приложение С
(справочное)

Роль изучения канцерогенности имплантатов

С.1 Общая часть

Опухоли, вызванные имплантатами, хорошо известны по экспериментам на крысах. Этот феномен называется «канцерогенезом твердого состояния». Этот феномен описывается таким образом.

Опухоли обычно развиваются вокруг или рядом с имплантатом с частотой, зависящей от нескольких факторов:

a) размеров имплантата (большие имплантаты, как правило, вызывают больше сарком, чем маленькие);
b) формы имплантата (по сведениям, диски вызывают больше эффект);
c) гладкости имплантата (неровные поверхности менее канцерогены, чем ровные);
d) целостности площади поверхности (чем больше отверстия или поры имплантата, тем меньше случаев опухоли);
e) толщины, для определенных материалов (более толстые имплантаты вызывают больше сарком);
f) продолжительности времени нахождения имплантата в ткани.

Материал, вызывающий опухоли, находясь в форме пленки или листа, в основном, вызовет меньшее число опухолей или не вызовет их вообще, если его имплантировать в форме пудры, нити или пористого материала [33], [34].

С другой стороны, многие отчеты указывают на разницу в распределении образования опухолей при использовании различных материалов одной формы и размера с единым протоколом экспериментальных животных.

Понимание механизма обобщено в монографии IARC [35].

С.2 Процесс и обоснование решения

При таких условиях Рабочая группа пересмотрела настоящее руководство в ИСО 10993-3 по созданию исследований канцерогенности.

Рабочей группе были предоставлены данные, полученные при использовании особо обозначенного протокола, включая определенную и постоянную форму всех имплантируемых материалов [36]. Данный протокол включал в себя двухлетнюю подкожную имплантацию пленочного имплантата размерами 10 мм × 20 мм × (от 0,5 до 1,0 мм) на 30—50 крысах—самцах породы Wistar или F344 в ряде учреждений. Эти данные показали значительное увеличение числа опухолей, обнаруженных у экспериментальных животных по сравнению с ложно оперированной контрольной группой по всем тестируемым материалам, включая номинальный отрицательный контроль. Пропорция экспериментальных животных с опухолями колебалась от 7 % с силиконом до 70 % с полиэтиленом, однако наблюдалось только небольшое отличие (5 %, 7 % и 10 %), когда исследования были повторены с силиконом. Группа также рассмотрела презентацию новой гипотезы, предполагающей, что канцерогенез твердого состояния может быть связан с вмешательством целевых межклеточных контактов, вызванных взаимодействием клетка/материал [37].

Группа нашла эту теорию многообещающей, но сочла ее связь с канцерогенным риском для людей неопределенным.

В период дискуссии представители регулирующих органов Европы, Японии и США пришли к соглашению, что определение канцерогенного риска не делалось исключительно на основании канцерогенеза твердого состояния. В немногих известных примерах, когда решение о канцерогенном риске принималось, использовала результаты канцерогенеза твердого состояния, всегда существовали подтверждающие данные, например, положительные результаты мутагенности.

Проведение исследований канцерогенности путем имплантации требует хирургических процедур и на экспериментальных животных, и на группе контроля. Таким образом, проведение таких исследований значительно отражается на состоянии животных. Рассматривая методики исследований канцерогенности при пересмотре данной части ИСО 10993, Рабочая группа пришла к выводу, что требования проводить исследования канцерогенности путем имплантации уже не являются определяющими, учитывая настоящую неопределенную связь с риском для людей. Дополнительным обоснованием явилось отсутствие какой-либо четкой роли данных имплантационных исследований при решениях, касающихся оценки биологической безопасности, в сочетании с явным ухудшением состояния животных.

Однако, если исследования канцерогенности признаны необходимыми (см. 5.4.1), метод, представленный в В.3, может помочь в интерпретации исследований канцерогенности путем имплантации. При проведении таких исследований необходимость параметров исследования должна быть обоснована, а также описана роль исследования при оценке человеческого риска.
ГОСТ Р ИСО 10993-3—2009

С.3 Исследования канцерогенности путем имплантации

Если проводится данная необязательная процедура, необходимо придерживаться следующего протокола.
Несмотря на то, что одна группа максимально имплантируемой дозы (МИД) может быть достаточной, рекомендуются две дозовые группы, включая МИД и ее часть (обычно половину МИД). Группа отрицательного контроля обычно получает сравнимую форму и вид клинически приемлемого материала или рекомендуемого контрольного материала с документально подтвержденным отсутствием канцерогенного потенциала, например, полиэтиленовые имплантаты.
МИД материала или медицинского изделия применяется при исследованиях канцерогенности на крысах. Если возможно, эта доза должна в несколько раз превышать наихудший случай воздействия на человека, в миллиграммах на килограмм.
Масса и/или площадь поверхности, определяющая дозу имплантата, должна превышать дозу ожидаемого клинического воздействия. Обоснование выбора дозы должно быть отражено документально. По приемлемости, из тестируемого материала/материалов должен быть изготовлен имплантат подходящей формы в соответствии с ИСО 10993-6, учитывая возможность индуцирования канцерогенности твердого состояния (эффект Оппенгеймера, см. литературу по исследованиям генотоксичности и канцерогенности [31]).
Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам

<table>
<thead>
<tr>
<th>Обозначение ссылочного международного стандарта</th>
<th>Обозначение и наименование соответствующего национального стандарта</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИСО 10993-1:2003</td>
<td>ГОСТ Р ИСО 10993-1—2009 Оценка биологического действия медицинских изделий. Часть 1. Оценка и исследования</td>
</tr>
<tr>
<td>ИСО 10993-2:2006</td>
<td>ГОСТ Р ИСО 10993-2—2009 Оценка биологического действия медицинских изделий. Часть 2. Требования к обращению с животными</td>
</tr>
<tr>
<td>ИСО 10993-12:2007</td>
<td>ГОСТ Р ИСО 10993-12—2009 Оценка биологического действия медицинских изделий. Часть 12. Приготовление проб и стандартные образцы</td>
</tr>
<tr>
<td>ИСО 10993-18</td>
<td>ГОСТ Р ИСО 10993-18—2009 Оценка биологического действия медицинских изделий. Часть 18. Исследование химических свойств материалов</td>
</tr>
<tr>
<td>OECD 414</td>
<td>—</td>
</tr>
<tr>
<td>OECD 415</td>
<td>—</td>
</tr>
<tr>
<td>OECD 416</td>
<td>—</td>
</tr>
<tr>
<td>OECD 421</td>
<td>—</td>
</tr>
<tr>
<td>OECD 451</td>
<td>—</td>
</tr>
<tr>
<td>OECD 453</td>
<td>—</td>
</tr>
<tr>
<td>OECD 471</td>
<td>—</td>
</tr>
<tr>
<td>OECD 473</td>
<td>—</td>
</tr>
<tr>
<td>OECD 476</td>
<td>—</td>
</tr>
</tbody>
</table>
Библиография

Общая литература

[1] OECD 474, Mammalian Erythrocyte Micronucleus Test
[2] OECD 475, Mammalian Bone Marrow Chromosome Aberration Test
[3] OECD 478, Genetic Toxicology — Rodent Dominant Lethal Test
[5] OECD 480, Genetic Toxicology — Saccharomyces cerevisiae — Gene Mutation Assay
[6] OECD 481, Genetic Toxicology — Saccharomyces cerevisiae — Mitotic Recombination Assay
[7] OECD 482, Genetic Toxicology — DNA Damage and Repair, Unscheduled DNA Synthesis in Mammalian Cells In Vitro
[8] OECD 483, Mammalian Spermatogonial Chromosome Aberration Test
[9] OECD 484, Genetic Toxicology — Mouse Spot Test
[10] OECD 485, Genetic Toxicology — Mouse Heritable Translocation Assay

Литература по трансгенным животным

Литература по анализам клеточной трансформации

Литература по исследованиям генотоксичности и канцерогенности

[34] IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, Vol. 74, Surgical Implants and Other Foreign Bodies, pp. 225–228, 1999

Литература по исследованиям токсического воздействия на развитие и репродуктивную функцию

Литература по исследованиям с применением трансгенных животных в качестве альтернативы исследованиям канцерогенности в течение продолжительности жизни

Ключевые слова: изделия медицинские, установление риска, исследования медицинских изделий, био-логическое действие, репродуктивная функция