Вибрация
ПОРОГИ ВИБРОТАКТИЛЬНОЙ
ЧУВСТВИТЕЛЬНОСТИ ДЛЯ ОЦЕНКИ
ДИСФУНКЦИЙ НЕРВНОЙ СИСТЕМЫ
Часть 2
Анализ и интерпретация результатов измерений на кончиках пальцев рук

ISO 13091-2:2003
Mechanical vibration — Vibrotactile perception thresholds for the
assessment of nerve dysfunction —
Part 2: Analysis and interpretation of measurements at the fingertips
(IDT)

Издание официальное
Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН Автономной некоммерческой организацией «Научно-исследовательский центр контроля и диагностики технических систем» (АНО «НИЦ КД») на основе собственного аутентичного перевода стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 183 «Вибрация и удар»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 16 декабря 2008 г. № 414-ст

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении С

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2009

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии
<table>
<thead>
<tr>
<th>Содержание</th>
<th>страница</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Область применения</td>
<td>1</td>
</tr>
<tr>
<td>2 Нормативные ссылки</td>
<td>1</td>
</tr>
<tr>
<td>3 Термины, определения, обозначения и сокращения</td>
<td>1</td>
</tr>
<tr>
<td>4 Обработка результатов измерений порогов вибroteактильной чувствительности</td>
<td>3</td>
</tr>
<tr>
<td>5 Средства измерений</td>
<td>5</td>
</tr>
<tr>
<td>6 Интерпретация результатов измерений порогов тактильной чувствительности и смещений порогов</td>
<td>8</td>
</tr>
<tr>
<td>Приложение А (рекомендуемое) Пороги вибroteактильной чувствительности здоровых субъектов</td>
<td>10</td>
</tr>
<tr>
<td>Приложение В (справочное) Оценка изменений порогов вибroteактильной чувствительности</td>
<td>13</td>
</tr>
<tr>
<td>Приложение С (справочное) Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам</td>
<td>17</td>
</tr>
<tr>
<td>Библиография</td>
<td>18</td>
</tr>
</tbody>
</table>
ГОСТ Р ИСО 13091-2—2008

Введение

Раннее обнаружение периферических невропатий верхних конечностей, которые часто выражаются в виде изменения тактильных функций вследствие изменения активности механорецепторов, имеет большое значение, в том числе для профилактики профессиональных заболеваний работников ручного труда. Подобные невропатии могут возникать в результате имеющегося заболевания либо вследствие воздействия химических или физических нейротоксических факторов. При правильном выборе условий измерений (см. ИСО 13091-1) можно разделить ответы от медленноадаптирующихся механорецепторов (SAI) и ответы от быстроадаптирующихся механорецепторов (FAI и FAII), используя для этого разные частоты вибратактильного воздействия.

Настоящий стандарт определяет порядок проведения анализа и интерпретации значений вибротактильных порогов на кончиках пальцев рук, измеренных в соответствии с ИСО 13091-1. Методы описания статистически значимых изменений в значении порога вибротактильной чувствительности распространяются как на однократное, так и на повторные измерения.
Вибрация

ПОРОГИ ВИБРОТАКТИЛЬНОЙ ЧУВСТВИТЕЛЬНОСТИ ДЛЯ ОЦЕНКИ ДИСФУНКЦИЙ НЕРВНОЙ СИСТЕМЫ

Часть 2

Анализ и интерпретация результатов измерений на кончиках пальцев рук

Дата введения — 2009—09—01

1 Область применения

Настоящий стандарт устанавливает методы анализа и интерпретации результатов измерений порогов вибратактильной чувствительности и их изменений. Приведен способ определения статистически значимых изменений порогов вибратактильной чувствительности.

Настоящая часть распространяется на результаты измерений порогов вибратактильной чувствительности на кончиках пальцев рук, проведенных в соответствии с ИСО 13091-1.

Значения порогов вибратактильной чувствительности здоровых субъектов, полученные в соответствии с ИСО 13091-1, приведены в приложении A.

Интерпретация выявленных изменений порогов вибратактильной чувствительности рассмотрена в приложении B.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:
ИСО 2041:1990 Вибрация и удар. Термины и определения
ИСО 5805:1997 Вибрация и удар. Воздействие на человека. Термины и определения
ИСО 13091-1:2001 Вибрация. Пороги вибратактильной чувствительности для оценки нервных дисфункций. Часть 1. Методы измерений на кончиках пальцев рук

3 Термины, определения, обозначения и сокращения

3.1 Термины и определения

В настоящем стандарте применены термины по ИСО 2041, ИСО 5805 и ИСО 13091-1, а также следующие термины с соответствующими определениями:

3.1.1 эквивалентная частота (equivalent frequency): Частота, выбранная в качестве репрезентативной частоты измерений в том случае, когда в процессе измерений порога вибратактильной чувствительности частота изменяется во времени.

3.1.2 здоровый субъект (healthy person): Субъект, который — по оценке квалифицированного медицинского персонала, полученной на основе результатов физических тестов и других клинических объективных осмотров, необходимых для подтверждения диагноза, — не имеет симптомов заболеваний.
ГОСТ Р ИСО 13091-2—2008

ний периферической нервной системы и который не подвержен регулярному воздействию нейротоксикичных факторов или вибрации.

3.1.3 группа населения (population group): Группа людей, объединенных одним или несколькими общими признаками.

Примечание — В качестве объединяющих признаков могут выступать, например, географическое положение, место проживания, возраст, пол, особенности питания.

3.1.4 механорецептор (mechanoreceptor): Чувствительное нервное окончание, преобразующее механическое воздействие на кожу (деформацию) в нервные импульсы.

3.1.5 порог вибротактильной чувствительности специфических рецепторов (receptor-specific vibrotactile perception threshold): Порог вибротактильной чувствительности при восприятии стимулов одной популяции механорецепторов в точке приложения стимула.

3.1.6 порог вибротактильной чувствительности (vibrotactile perception threshold): Уровень ускорения поверхности кожи, при котором наблюдается 50% положительных ответов на психодинамической, соответствующих обнаружению субъектом предъявленных стимулов чистого тона.

3.1.7 базовый порог вибротактильной чувствительности (baseline vibrotactile perception threshold): Начальный порог вибротактильной чувствительности, с которым сравнивают результаты последующих измерений.

3.1.8 референтный порог вибротактильной чувствительности (reference vibrotactile perception threshold): Порог вибротактильной чувствительности, определенный для здоровых субъектов.

3.1.9 смещение порога (threshold shift): Стойкое (не преходящее со временем) изменение порога вибротактильной чувствительности по сравнению с исходно установленным базовым значением.

3.1.10 референтное смещение порога (reference threshold shift): Стойкое смещение порога вибротактильной чувствительности относительно референтного порога вибротактильной чувствительности для фиксированной или эквивалентной частоты.

3.1.11 относительное смещение порога (relative threshold shift): Стойкое смещение порога вибротактильной чувствительности относительно порога вибротактильной чувствительности, полученное по результатам предшествующих измерений для того же субъекта, тем же методом измерений, на том же пальце и для той же частоты (эквивалентной частоты).

3.1.12 алгоритм психодинамических измерений (psychophysical algorithm): Способ измерений, в процессе которых субъект предъявляет физический стимул для выявления одного или нескольких сенсорных ответов, таких как восприятие присутствия стимула или характера внешнего воздействия (движения кожи).

3.1.13 метод границ (up-down algorithm): Алгоритм психодинамических измерений, позволяющий определить два порога чувствительности для воздействий нарастающей и спадающей интенсивности) посредством предъявления субъекту последовательности кратковременных стимулов меняющейся интенсивности.

Примечание — Обычно этот метод состоит в приложении последовательности стимулов постепенно нарастающей интенсивности до тех пор, пока субъект не подаст знак о начале ощущения воздействия (порог нарастающей интенсивности воздействия). После этого интенсивность стимулов уменьшают до тех пор, пока субъект не подаст знак о том, что воздействие им более не ощущается (порог спадающей интенсивности воздействия).

3.1.14 метод фон Бекеши (von Bekésy algorithm): Алгоритм психодинамических измерений, позволяющий определить два порога чувствительности (для воздействий нарастающей и спадающей интенсивности) посредством предъявления субъекту непрерывного стимула меняющейся интенсивности, которая часто сопровождается изменениями частоты (сдвигаясь в тон).

3.1.15 прогностическая ценность (predictive value): Достоверность предсказания заболевания по результатам объективного тестирования ряда свойств или функций человеческого организма.

3.1.16 прогностическая ценность положительных результатов (positive predictive value): Доля (процентное отношение) лиц в группе населения, для которых было получено правильное предсказание возникновения болезни (симптомов заболевания) по положительным результатам объективных тестов.

3.1.17 прогностическая ценность отрицательных результатов (negative predictive value): Доля (процентное отношение) лиц в группе населения, для которых было получено правильное предсказание отсутствия болезни (симптомов заболевания) по отрицательным результатам объективных тестов.
3.1.18 корреляция (association): Статистическая мера связи наблюдения каких-либо свойств (функций) человеческого организма с присутствием других свойств (функций).

3.1.19 психометрическая кривая (psychometric function): Функция, выражающая зависимость доли (или процента) положительных ответов субъектов на предъявленные стимулы от физических параметров стимула.

3.1.20 показатель чувствительности (sensitivity index): Отношение обнаруженного смещения порогов от базового значения 150 дБ к такому же показателю здоровых субъектов того же возраста, от того же базового значения, пронормированного для каждой частоты измерения или эквивалентной частоты.

Примечание — Повышение порога вибратактильной чувствительности, ассоциирующееся с понижением остроты восприятия, приводит к уменьшению показателя чувствительности, который для здоровых субъектов равен единице.

3.1.21 тактограмма (tactogram): Графическое изображение зависимости смещения порога от частоты.

3.1.22 толкатель (probe): Устройство для передачи внешних двигательных (колебательных) стимулов на поверхность кожи.

3.1.23 подставка (surround): Неподвижная твердая и ровная поверхность, на которой расположены кончики пальцев субъекта, с отверстиями, через которое кончик пальца контактирует с толкательем.

3.2 Обозначения и сокращения

В настоящем стандарте использованы следующие обозначения и сокращения:

FAI — быстроадаптирующиеся механорецепторы типа I;
FAII — быстроадаптирующиеся механорецепторы типа II;
N — число субъектов;
N_p — число пальцев;
ρ — вероятность;
SAI — медленноадаптирующиеся механорецепторы типа I;
s_i — Своеобразное распределение параметра для \(T_i \);
\(T_{base} \) — базовый порог вибратактильной чувствительности на частоте \(f_i \);
\(T_i \) — \(i \)-й порог вибратактильной чувствительности на частоте \(f_i \);
\(T_{ref} \) — средний порог вибратактильной чувствительности на частоте \(f_i \);
\(T_{ref, obs} \) — наблюдаемый порог вибратактильной чувствительности на частоте \(f_i \);
\(T_{ref, M} \) — референтный порог вибратактильной чувствительности на частоте \(f_i \);
\(V \) — стандартное отклонение результатов измерений;
VPT — порог вибратактильной чувствительности;
\(\Delta T_{ref} \) — референтное смещение порога на частоте \(f_i \);
\(\Delta T_{ref, i} \) — \(i \)-е референтное смещение порога на частоте \(f_i \);
\(\Delta T_{ref, M} \) — среднее референтное смещение порога на частоте \(f_i \);
\(\Delta T_{rel} \) — относительное смещение порога на частоте \(f_i \);
\(\Delta T_{rel, i} \) — \(i \)-е относительное смещение порога на частоте \(f_i \);
\(\Delta T_{rel, M} \) — среднее относительное смещение порога на частоте \(f_i \).

Примечание — Символы, использующие заглавное T, относятся к значениям порогов, выраженных в децибелах, дБ, относительно опорного значения 10^-6 м/с². Те же самые значения порогов, выраженные в метрах на секунду в квадрате, м/с², обозначают через строчное t.

4 Обработка результатов измерений порогов вибратактильной чувствительности

4.1 Общие положения

Представление, анализ и интерпретация порогов вибратактильной чувствительности — по ИСО 13091-1, раздел 7. Порог вибратактильной чувствительности субъекта обычно измеряют одно-
ГОСТ Р ИСО 13091-2—2008

кратно, но для интерпретации результатов измерений необходимо знать, как они могут изменяться при повторных измерениях (например выполненных в другие дни).

В настоящем стандарте рассмотрены два типовых случая. Если в течение нескольких дней на том же самом пальце субъекта проводят повторные измерения порогов вибrotактильной чувствительности субъекта, то разброс относительно выбного среднего порога вибrotактильной чувствительности, выраженного в децибелах, определяют через стандартное отклонение, рассчитанное по измеренным значениям вибrotактильной чувствительности (в децибелах). Другой вариант, используемый в том случае, когда определить стандартное отклонение по результатам повторных измерений невозможно (т. е. проведено только одно измерение), — оценить разброс по неопределенности, присущей методу измерений. Эту неопределенность получают в результате повторных измерений, проведенных данным методом среди здоровых субъектов.

4.2 Выборочное среднее

Если проведены повторные измерения порога вибrotактильной чувствительности на заданной частоте стимула (эквивалентной частоте) f_j согласно требованиям ИСО 13091-1, тогда средний порог, в децибелах, вычисляют как среднее арифметическое измеренных значений порогов, выраженных в децибелах, дБ (относительно опорного значения 10^{-6} м/с2):

$$ T(f_j)_M = \frac{1}{n} \sum_{i=1}^{n} T(f_j)_i. \tag{1} $$

Примечание — Среднее значение порога вибrotактильной чувствительности, определенное по формуле (1) через значения величин, выраженных в децибелах, дБ, эквивалентно среднегеометрическому значению результатов измерений тех же величин, выраженных в метрах на секунду в квадрате, м/с2.

4.3 Выборочная дисперсия

В случае проведения ряда независимых (например, в разные дни) измерений порога вибrotактильной чувствительности на одном и том же пальце руки субъекта можно рассчитать характеристику разброса результатов измерений — выборочное стандартное отклонение σ от среднего порога, выражаемое в децибелах. Если значения порогов вибrotактильной чувствительности $T(f_j)_i$, полученные в результате повторных измерений на заданной частоте (эквивалентной частоте) f_j предъявления стимула, выражены в децибелах, дБ (относительно опорного значения 10^{-6} м/с2), то

$$ \sigma = \left[\frac{1}{n-1} \sum_{i=1}^{n} (T(f_j)_i - T(f_j)_M)^2 \right]^{1/2}, \tag{2} $$

где $T(f_j)_M$ — усредненное по n измерениям значение порога вибrotактильной чувствительности в децибелах (относительно опорного значения 10^{-6} м/с2).

Если рассчитать стандартное отклонение по результатам повторных измерений невозможно (например, для данного субъекта проведено только одно измерение порога вибrotактильной чувствительности), то в качестве оценки этой характеристики берут стандартное отклонение, присущее данной методике измерений. Стандартное отклонение для методики измерений получают на основе измерений по данной методике порогов вибrotактильной чувствительности у здоровых субъектов. Для расчета стандартного отклонения необходимо выполнить не менее 10 независимых измерений (например, в 10 разных дней). Измерения следует выполнять в соответствии с требованиями ИСО 13091-1.

Стандартное отклонение, в децибелах, вычисляют по формуле (2), используя результаты измерений порогов вибrotактильной чувствительности, в децибелах среднегеометрическое стандартное отклонение, рассчитанных, по крайней мере, для трех здоровых субъектов, применяют в качестве оценки порога вибrotактильной чувствительности на данной частоте (эквивалентной частоте) при интерпретации результатов измерений для конкретного субъекта.

Обычные гормональные изменения во время менструального цикла у женщин приводят к смещениям значений порогов, полученных от Fall, до 20 дБ. При оценке разброса результатов измерений порогов вибrotактильной чувствительности женщин для Fall (т. е. на частотах 100, 125 и 160 Гц) заниженную цикличность следует принимать во внимание. Смещение порога происходит за несколько дней до и через несколько дней после овуляции.

4.4 Достоверность измерений

В некоторых ситуациях исследователем может быть поставлена под сомнение достоверность результатов измерений. Так в ИСО 13091-1 указано, что к ошибочным заключениям ведет проведение измерений на поврежденных участках кожи.
В этом случае для анализа и правильной интерпретации результатов измерений порогов виброметрической чувствительности необходимо получение дополнительной информации. В частности, следует рассмотреть возможность повышения достоверности результатов посредством проведения новой серии измерений в соответствии с требованиями ИСО 13091-1. Результаты этой новой серии измерений должны быть обработаны в соответствии с настоящим стандартом.

Примечание — Если для одного участка измерений пороги виброметрической чувствительности определяют на двух и более частотах (эквивалентных частотах), возбуждаемых одну и ту же популяцию механорецепторов, то для подтверждения достоверности измерений может быть проверена согласованность смещений порога для разных популяций механорецепторов (см. 5.6).

4.5 Достоверность метрологических характеристик метода

В некоторых ситуациях у исследователя могут появиться основания полагать, что неопределенность, приписанная данной методике измерений, не будет адекватно описывать разброс результатов измерений для конкретного субъекта. Таким основанием может быть, например, несогласованность полученных значений порогов при нарастающей и спадающей интенсивности стимулов (см. ИСО 13091-1, пункт 6.3) или другая подобная информация.

В этом случае проведение анализа и интерпретации порогов виброметрической чувствительности методами, установленными настоящим стандартом, возможно только после определения характеристики разброса, присущей конкретному субъекту исследований. Эта характеристика может быть определена проведением повторных измерений для данного субъекта в соответствии с 4.3.

5 Средства измерений

5.1 Общие положения

Для правильной интерпретации полученных значений порогов виброметрической чувствительности вычисляют смещение порога относительно некоторого установленного значения. Эти вычисления должны быть проведены для каждой частоты (эквивалентной частоты) и каждого пальца, для которого были получены значения порогов виброметрической чувствительности согласно разделу 4.

5.2 Относительное смещение порога

Относительное смещение порога вычисляют как разность между двумя значениями порогов виброметрической чувствительности, выраженными в децибелах, дБ. (относительно опорного значения 10^-6 м/с^2) или как отношение этих же величин, выраженных в метрах на секунду в квадрате, м/с^2, из которых первая величина является измеренным порогом виброметрической чувствительности, а вторая — базовый порог виброметрической чувствительности. Обе эти величины должны быть получены для одного и того же пальца субъекта, одним и тем же методом измерений, на одной и той же частоте (эквивалентной частоте) субъекта. Относительное смещение порога \(\Delta T(f)_{rel} \) в децибелах, вычисляют для каждой \(j \)-й частоты (эквивалентной частоты) по формуле

\[
\Delta T(f)_{rel} = T(f)_{rel} - T(f)_{base},
\]

где оба члена в правой части также должны быть выражены в децибелах (относительно опорного значения 10^-6 м/с^2).

Формулу (3) можно преобразовать, выразив \(T(f)_{rel} \) через значения порогов, выраженных в метрах на секунду в квадрате, м/с^2:

\[
\Delta T(f)_{rel} = 20 \log \left[\frac{T(f)_{rel}}{T(f)_{base}} \right].
\]

Примечание — Вычисление относительного смещения порога позволяет выявить изменения остроты восприятия тактильных стимулов субъектом, например, если известно, что в данный момент у него имеется место патологический или, наоборот, восстановительный процесс. При этом за базовый порог виброметрической чувствительности обычно принимают первое значение измерения данной величины для данного субъекта.

5.3 Референтное смещение порога

Референтное смещение порога вычисляют как разность между измеренным и референтным значениями порога виброметрической чувствительности, выраженными в децибелах, дБ, (относительно опорного значения 10^-6 м/с^2), или отношение этих двух величин, выраженных в метрах в секунду в квадрате, м/с^2. Референтное смещение порога \(\Delta T(f)_{rel} \) в децибелах, вычисляют для каждой \(j \)-й частоты (эквивалентной частоты) по формуле
ГОСТ Р ИСО 13091-2 — 2008

\[\Delta T(f_j)_{\text{ref}} = T(f_j)_{\text{obs}} - T(f_j)_{\text{ref}}. \]
(5)

где оба члена в правой части также должны быть выражены в децибелах, дБ, (относительно опорного значения 10^{-6} \text{ м/квадрат м/с}^2).

Формулу (5) можно преобразовать, выражив \(\Delta T(f_j)_{\text{ref}} \) через значения порогов, выраженных в метрах на секунду в квадрате, м/с^2:

\[\Delta T(f_j)_{\text{ref}} = 20 \log |t(f_j)_{\text{obs}} / t(f_j)_{\text{ref}}|. \]
(6)

Примечание — Вычисление референтного смещения порога способствует выявлению тактильной дисфункции, которая может быть следствием повреждения механорецепторов или нервной проводимости. Существует корреляция между референтным смещением порога и проявлением симптоматики. Референтное смещение порога может быть также обусловлено невротическими верхними конечностями.

5.4 Средние смещения порогов

В случае повторных измерений смещений порога для заданной частоты (эквивалентной частоты), если есть основания полагать, что измеряемая величина является стабильной, следует вычислять среднеарифметические значения относительного и референтного смещений порогов, выраженные в децибелах. Среднее относительное смещение порога для частоты \(f_j \) определяют по формуле

\[T(f_j)_{\text{rel}, M} = \frac{1}{n} \sum_{i=1}^{n} \Delta T(f_j)_{\text{rel}, i}. \]
(7)

а среднее референтное смещение порога для частоты \(f_j \) определяют по формуле

\[\Delta T(f_j)_{\text{ref}, M} = \frac{1}{n} \sum_{i=1}^{n} \Delta T(f_j)_{\text{ref}, i}. \]
(8)

5.5 Тактограмма

Тактограмма представляет собой график в осях порога вибратактильной чувствительности (ось ординат) и частоты или эквивалентной частоты (ось абсцисс) с логарифмическими шкалами координат (см. рисунок 1). Диапазон изменений смещения порога от минус 20 до 60 дБ. На графике могут быть указаны области частот, соответствующие возбуждению разных популяций механорецепторов.

Примечание 1 — Диапазон частот измерения порогов вибратактильной чувствительности, определенный ИСО 13091-1, охватывает области действия механорецепторов SAI, FAI и FAII, указанных в ИСО 13091-1, таблица 3.
Такограмма может быть построена для отдельных пальцев руки, для разных рук, субъектов или групп субъектов. По оси ординат могут быть отложены относительные или референтные смещения порогов. Значения смещения порога, отложенные для разных частот (эквивалентных частот), могут быть соединены отрезками прямых линий.

Если такограмму строят для всех пальцев руки (рук) субъекта, то смещение порога для разных пальцев должны обозначаться разными значками. Смещения порога для пальцев правой руки отмечают кружочками, а для левой — квадратиками.

П р и м е ч а н и е 2 — Может оказаться удобным отмечать каждый палец руки соответствующей цифрой в значке (кружочке или квадратике) или разным цветом. При обозначении цифрами пальцам руки присваивают следующие номера:
- 1: указательный палец;
- 2: средний палец;
- 3: безымянный палец;
- 4: мизинец;
- 5: большой палец.

5.6 Согласованность смещения порогов на всем диапазоне частот

Если исследование порога вибратактильной чувствительности проводят на одном и том же участке кожи на нескольких частотах (эквивалентных частотах), возбуждающих определенную популяцию механорецепторов в соответствии с ИСО 13091-1, можно проверить согласованность полученных значений относительных или референтных смещений порога на разных частотах (эквивалентных частотах). Согласованность результатов характеризует разнос результатов измерений, в децибелах, на частотах, соответствующих возбуждению одной популяции механорецепторов (см. ИСО 13091-1, таблица 3).

Согласованность может считаться нарушенной в тех случаях, когда измерения на данном участке пальца показывают выход значений порогов вибратактильной чувствительности за пределы области, соответствующей разбросу значений этих величин для здоровых субъектов (см. 6.5) для одной и той же популяции механорецепторов. В этом случае можно предположить, что на некоторых частотах, обычно связанных с активностью данной популяции, дополнительный вклад вносит активность механорецепторов другой популяции.

П р и м е ч а н и е — Анализ согласованности порогов для механорецепторов разных популяций, определенных в соответствии с ИСО 13091-1, позволяет выявить индивидуальные отклонения в реакции субъекта. Смещения порогов на частотах (эквивалентных частотах) одной популяции механорецепторов, для которых эти отклонения не проявляются, будут идентичны.

5.7 Среднее смещение порога по популяции механорецепторов

Если исследование порога вибратактильной чувствительности исследуют на одном участке кожи на нескольких частотах (эквивалентных частотах), возбуждающих определенную популяцию механорецепторов в соответствии с ИСО 13091-1, можно получить значения относительного или референтного смещения порога, усредненного по механорецепторам данной популяции. Среднее смещение порога популяции механорецепторов определяют как среднее арифметическое значение относительных или референтных смещений порога, в децибелах, по всем частотам (эквивалентным частотам), соответствующим данной популяции. Перечень частот измерений — по ИСО 13091-1, таблица 3. Среднее смещение порога по популяции механорецепторов также должно быть выражено в децибелах.

Среднее относительное смещение порога по популяции механорецепторов определяют по формуле

$$
\Delta T(f_j)_{\text{rel, m}} = \frac{1}{m} \sum_{j=1}^{m} \Delta T(f_j)_{\text{rel}},
$$

где суммирование осуществляют по m частотам (эквивалентным частотам), соответствующим данной популяции механорецепторов.

Среднее референтное смещение порога по популяции механорецепторов определяют по формуле

$$
\Delta T(f_j)_{\text{ref, m}} = \frac{1}{m} \sum_{j=1}^{m} \Delta T(f_j)_{\text{ref}},
$$

где
ГОСТ Р ИСО 13091-2—2008

где суммирование осуществляют по l частотам (эквивалентным частотам), соответствующим данной популяции механорецепторов.

К расчетам по формулам (9) и (10) следует подходить с осторожностью, когда измерения на данном участке пальца показывают выход значений порогов вибrotакtilьной чувствительности за пределы области, соответствующей разбросу значений этих величин для здоровых субъектов (см. 6.5), только для какой-то одной популяции механорецепторов. В этом случае можно предположить, что на некоторых частотах, обычно связанных с данной популяцией, возбуждению подверглись механорецепторы другой популяции.

П р и м е ч а н и е — Вычисление средних значений относительного и референтного смещений порога позволяет выявить небольшие изменения тактильной остроты восприятия.

6 Интерпретация результатов измерений порогов тактильной чувствительности и смещений порогов

6.1 Общие положения

Значения порогов вибrotакtilьной чувствительности и смещения порогов дают информацию о функционировании периферических сенсорных нервных окончаний в пальцах рук, кистях либо предплечьях. Изменения порогов могут быть представлены несколькими способами, как показано в 6.2 — 6.5.

6.2 Погрешность измерений и статистическая значимость результатов измерений порогов вибrotакtilьной чувствительности

Если порог вибrotакtilьной чувствительности на кончиках пальцев рук определяют в серии повторных измерений согласно ИСО 13091-1, то погрешность измерений среднего порога вибrotакtilьной чувствительности, в децибелах, выражают через стандартное отклонение по формуле (2).

Если рассчитать стандартное отклонение по результатам повторных измерений невозможно (например, для данного субъекта проведено только одно измерение порога вибrotакtilьной чувствительности), то в качестве оценки этой характеристики берут стандартное отклонение, приписанное данному методу измерений (см. 4.3). Данную величину, выраженную в децибелах, дБ, используют для статистического анализа результатов измерений порогов вибrotакtilьной чувствительности.

6.3 Погрешность измерений и статистическая значимость результатов измерений относительных смещений порога

Если относительное смещение порога определяют в серии повторных измерений, то погрешность измерении среднего относительного смещения порог, в децибелах, выражают через стандартное отклонение результатов измерений относительных смещений порога, в децибелах.

При наличии только двух измерений порога вибrotакtilьной чувствительности, позволяющих получить одно значение относительного смещения порога, в качестве оценки стандартного отклонения берут увеличенное в 1,414 раза стандартное отклонение метода измерений по 4.3. Данную величину, выраженную в децибелах, дБ, используют для статистического анализа относительных смещений порога.

6.4 Пороги вибrotакtilьной чувствительности здоровых субъектов

Часто возникает необходимость сравнить порог вибrotакtilьной чувствительности конкретного субъекта с аналогичным показателем референтной группы населения, состоящей из здоровых субъектов. Значения порогов вибrotакtilьной чувствительности здоровых субъектов в возрасте 30 лет приведены в приложении A. Эти значения выражены через перцентили уровней 2,5; 15; 50 (медиана1); 85 и 97,5 для группы населения на каждой частоте (эквивалентной частоте) предъявления стимула по ИСО 13091-1. Если порог вибrotакtilьной чувствительности выражен в децибелах, то его распределение по группе населения может быть аппроксимировано Гауссовским законом.

Данные, приведенные в приложении A, можно использовать для интерпретации порогов вибrotакtilьной чувствительности, измеренных в соответствии с ИСО 13091-1. Значения, соответствующие

1) Здесь и далее в оригинале международного стандарта ИСО 13091-2:2003 перцентили уровня 50 ошибочно назван средним значением. Среднее значение совпадает с медианой только для распределения симметричной формы (например, гауссова), к которым не относятся, например, распределение порогов вибrotакtilьной чувствительности здоровых субъектов, выраженных в метрах на секунду в квадрате, м/с² (см. приложение A).
перцентилю уровня 50, используют в качестве референтных порогов для расчетов референтных смещений порогов по формулам (5) и (6).

П р и м е ч а н и е 1 — Средний порог вибротактильной чувствительности здоровых субъектов повышается с возрастом примерно на 0,03 дБ в год на частотах, соответствующих SAI, 0,08 дБ в год на частотах, соответствующих FAI, и на 0,25—0,35 дБ в год на частотах, соответствующих FAL.

П р и м е ч а н и е 2 — При эпидемиологических исследованиях значения порогов вибротактильной чувствительности для референтной группы населения могут быть получены по результатам обследования контрольной группы.

6.5 Отклонения от порогов вибротактильной чувствительности здоровых субъектов

Отклонения от порогов вибротактильной чувствительности здоровых субъектов и референтные смещения порогов должны быть оценены через вероятности данных отклонений от средних значений указанных величин для здоровых субъектов. Погрешность измерений порогов вибротактильной чувствительности определяют согласно 6.2. Погрешность измерений среднего референтного порога вибротактильной чувствительности здоровых субъектов принимают равной нулю. Перцентили уровней 2,5 и 97,5 для порогов вибротактильной чувствительности здоровых субъектов, приведенные в приложении А, рассматривают как верхнюю и нижнюю границы области ожидаемых значений результатов измерений по ИСО 13091-1 для здоровых субъектов. Результаты вне указанной области рассма-тривают как отклонения. Таким образом строят верхнюю и нижнюю границы для референтных смещений порогов.

П р и м е ч а н и е — Для конкретного субъекта возможные отклонения от среднего порога вибротактильной чувствительности или среднего референтного смещения порога, характерного для здоровых субъектов, не обязатель-но обладают прогностической ценностью в отношении симптомов или нарушений, обусловленных дисфункцией периферической нервной системы.

6.6 Физиологическое и клиническое значения изменений порогов вибротактильной чувствительности

Физиологическое, функциональное и клиническое значение смещений порогов рассмотрено в приложении В.

Вибротактильная чувствительность может быть использована в качестве объективного теста для выявления периферических невропатий, как генерализованных, так и локальных, возникающих вследствие заболевания или воздействия нейротоксичных химических или физических факторов. Если значения порогов вибротактильной чувствительности определяют на нескольких частотах (эквивалентных частотах), вычисления показателя чувствительности или построение тактограммы может помочь в интерпретации полученных результатов. Повторные измерения относительного смещения порога могут быть полезны в ситуации, когда имеются патологические или восстановительные процессы.

Измерения порогов вибротактильной чувствительности и референтных смещений порога могут быть средством специфического влияния на тактильную функцию и отражать наличие скрытой патологии. Показано, что хорошим диагностическим признаком является референтное смещение порога на разных частотах (эквивалентных частотах), представленное в форме тактограммы. Примеры интер-претации тактограммы приведены в приложении В.
Пороги вибрационной чувствительности здоровых субъектов

В таблице A.1 приведены результаты исследований порогов вибрационной чувствительности здоровых субъектов методами тестирования, в основном соответствующими ИСО 13091-1. Однако, поскольку все эти исследования были проведены до опубликования вышеуказанного стандарта, в них содержатся некоторые отклонения от требований ИСО 13091-1, которые указаны в сноске к таблице.

Литературные источники, из которых взяты значения порогов вибрационной чувствительности, приведены в левом столбце таблицы A.1. Диаметры толкателя и подставки, если они используются, приведены в столбцах 2 и 3 соответственно. В работе [25] постоянный прогиб участка кожи измерялся и контролировался непосредственно. В других исследованиях эту величину оценивали по измерениям силы в области контакта с толкателем или с толкателем и подставкой (столбец 4). Во всех исследованиях, включенных в таблицу A.1, сила нажатия на толкатель и подставку, если она использовалась, поддерживалась на заданном уровне. В таблице A.1 указаны также такие параметры алгоритма психофизических измерений как пол субъекта (мужской — М или женский — F), число обследованных субъектов N и их средний возраст.

В таблице A.1 дано краткое описание групп населения, для которых были получены значения порогов вибрационной чувствительности. Если в литературном источнике была приведена информация о медицинских наблюдениях субъектов в целях выявления симптомов заболеваний периферической нервной системы или о регулярных воздействиях на субъектов нейротоксических факторов или вибрации, она также указана в таблице A.1. Во всех работах значения порогов вибрационной чувствительности были определены для здоровых субъектов.

Значения порогов вибрационной чувствительности для здоровых мужчин и женщин, определенных в соответствии с требованиями ИСО 13091-1, приведены в децибелах, дБ, относительно опорного значения 10^{-6} м/c^2 (таблица A.2) и в метрах на секунду в квадрате, м/с^2 (таблица A.3). Эти значения представлены в виде перцентилий уровней 25; 50; 97,5 (médiana); 85 и 97,5 для соответствующей группы населения для всех частот (эквивалентных частот) предъявления стимула, указанных в ИСО 13091-1, таблица 1. Принято, что пороги вибрационной чувствительности, если они выражены в децибелах, распределены по закону, близкому к Гауссовому. Значения перцентиля, отличных от среднего значения, для порогов вибрационной чувствительности, выраженных в децибелах, относительно опорного значения 10^{-6} м/c^2, на заданной частоте (эквивалентной частоте) f_j могут быть получены исходя из формулы для вероятности распределения p:

\[p [T(f_j)_{rel}] = \frac{1}{\sqrt{2\pi}\sigma(f_j)} e^{-\frac{(T(f_j)_{rel} - T(f_j)_{ref,M})^2}{2\sigma^2(f_j)}}, \]

где значения среднего референтного порога вибрационной чувствительности \(T(f_j)_{ref,M} \) и стандартного отклонения \(\sigma(f_j) \) приведены в таблицах A.2 и A.4 соответственно.

Значения порогов вибрационной чувствительности в таблице A.2 получены по данным таблицы A.1 приведенным к единому возрастному параметру 30 лет. Для каждой частоты (эквивалентной частоты) указано общее число пальцев N_P, по которым проводилось усреднение. Пороги вибрационной чувствительности определялись по результатам, полученными для пальцев 2 и 3 (см. 5.5, примечание 2) и пальцу 5, если не наблюдалось существенной разницы в порогах, измеренных для пальцев, находящихся в зоне иннервации срединного и локтевого нервов.

П р и м е ч а н и е — Использование альтернативных методов измерений по ИСО 13091-1 может дать несколько отличные значения порогов вибрационной чувствительности. Случайные (не учитываемые поправками на условия измерений) отклонения средних порогов вибрационной чувствительности для каждого исследования, указанного в таблице A.1, от перцентиля уровня 50, приведенных в таблице A.2, обычно не превышает 2 дБ. В некоторых исследованиях наблюдалось повышение порога вибрационной чувствительности (т.е. снижение остро- ты восприятия) на пальцах, иннервируемых локтевым нервом.

На порог вибрационной чувствительности женщины (в частности, на частотах, соответствующих FAIL, т.е. 100, 125 и 160 Гц) влияют обычные гормональные изменения в период менструального цикла. Этим объясняется более высокое значение \(s(f_j) \) для женщин по сравнению с мужчинами (см. таблицу A.4).

Средний порог вибрационной чувствительности здоровых субъектов повышается с возрастом примерно на 0,03 дБ в год на частотах, соответствующих SAI, на 0,08 дБ в год на частотах, соответствующих FAIL, и на 0,25—0,35 дБ в год на частотах, соответствующих FAIL. Для FAIL этот эффект зависит также от частоты возбужде- ния: на частоте 100 Гц он менее выражен, чем на частоте 160 Гц. В соответствии с этим могут быть скорректированы средние значения вибрационной чувствительности для субъектов, чей возраст не равен 30 годам. Однако необходимо иметь в виду, что закон изменения с возрастом порогов вибрационной чувствительности для отдельных субъектов может отличаться от вышеуказанного весьма существенно.
ГОСТ Р ИСО 13091-2—2008

Перцентили уровня 50, приведенные в таблицах А.2 и А.3, могут использоваться в качестве референтных порогов при вычислении и интерпретации референтных смещений порогов: \(T(f)_{\text{ref}} \) по формуле (5) и \(t(f)_{\text{ref}} \) по формуле (6) соответственно.

Таблица А.1 — Литературные источники исследований порогов вибротактливой чувствительности методами, близкими к ИСО 13091-1

<table>
<thead>
<tr>
<th>Источник</th>
<th>Диаметр толкателя, мм</th>
<th>Диаметр подставки, мм</th>
<th>Прогиб кожи, мм</th>
<th>Метод</th>
<th>Субъект исследований</th>
<th>Пол</th>
<th>Число субъектов (N)</th>
<th>Средний возраст, лет</th>
<th>Обследуемая группа</th>
</tr>
</thead>
<tbody>
<tr>
<td>[4](^a)</td>
<td>6</td>
<td>10</td>
<td>2,8(^b)</td>
<td>фон Бекеши</td>
<td>M</td>
<td>10</td>
<td>30,1</td>
<td>Работники ручного труда под медицинским наблюдением</td>
<td></td>
</tr>
<tr>
<td>[4](^b)</td>
<td>6</td>
<td>10</td>
<td>2,8(^b)</td>
<td>фон Бекеши</td>
<td>F</td>
<td>15</td>
<td>32,3</td>
<td>Работники ручного труда под медицинским наблюдением</td>
<td></td>
</tr>
<tr>
<td>[5]</td>
<td>3</td>
<td>—</td>
<td>0,9(^b)</td>
<td>границ</td>
<td>M</td>
<td>38</td>
<td>40,8</td>
<td>Служащие и работники ручного труда кавказской и азиатской национальностей под медицинским наблюдением</td>
<td></td>
</tr>
<tr>
<td>[24]</td>
<td>6</td>
<td>10</td>
<td>2,9(^b)</td>
<td>фон Бекеши</td>
<td>M</td>
<td>29</td>
<td>36</td>
<td>Работники ручного труда</td>
<td></td>
</tr>
<tr>
<td>[25]</td>
<td>6</td>
<td>—</td>
<td>1,0(^c)</td>
<td>фон Бекеши</td>
<td>M</td>
<td>11</td>
<td>25</td>
<td>Студенты и служащие</td>
<td></td>
</tr>
<tr>
<td>[29](^b)</td>
<td>6</td>
<td>10</td>
<td>2,8(^b)</td>
<td>фон Бекеши</td>
<td>M</td>
<td>9</td>
<td>28,8</td>
<td>Служащие</td>
<td></td>
</tr>
<tr>
<td>[38]</td>
<td>6</td>
<td>10</td>
<td>2,8(^b)</td>
<td>фон Бекеши</td>
<td>M</td>
<td>165</td>
<td>40</td>
<td>Служащие и работники ручного труда под медицинским наблюдением</td>
<td></td>
</tr>
<tr>
<td>[36]</td>
<td>6</td>
<td>10</td>
<td>2,8(^b)</td>
<td>фон Бекеши</td>
<td>F</td>
<td>126</td>
<td>40</td>
<td>Служащие и работники ручного труда под медицинским наблюдением</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) Расчеты, выполненные при нарастающем и спадающем возбуждении, дают систематическую ошибку VRT порядка 1,5 дБ (см. [36]).

\(^b\) Прогиб кожи оценивался по силе нажатия в области контакта (по методике, описанной в [23] и [33]).

\(^c\) На частотах свыше 50 Гц скорость изменения интенсивности стимула превышала 3 дБ/с, что могло привести к завышению оценки VRT.

\(^d\) Скорость изменения интенсивности стимула превышала 3 дБ/с, что могло привести к завышению оценки VRT.

Таблица А.2 — Пороги вибротактливой чувствительности в децибелах (относительно опорного значения 10^{-6} м/с²) для здоровых субъектов

<table>
<thead>
<tr>
<th>Пол</th>
<th>Уровень перцентили (N_f)</th>
<th>Возраст, лет</th>
<th>Частота, Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,15</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Мужской (M)</td>
<td>2,5</td>
<td>63,8</td>
<td>67,0</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>69,0</td>
<td>72,0</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>75,0</td>
<td>77,5</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>81,0</td>
<td>83,0</td>
</tr>
<tr>
<td></td>
<td>97,5</td>
<td>86,3</td>
<td>88,0</td>
</tr>
<tr>
<td></td>
<td>(N_f)</td>
<td>11</td>
<td>110</td>
</tr>
<tr>
<td>Женский (F)</td>
<td>2,5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>97,5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(N_f)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Пол</td>
<td>Уровень перцентиля и (N_f)</td>
<td>Возраст, лет</td>
<td>Частота, Гц</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3,15</td>
<td>4</td>
</tr>
<tr>
<td>Мужской (M)</td>
<td>2,5</td>
<td>0,0015</td>
<td>0,0022</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0,0028</td>
<td>0,0040</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>0,0056</td>
<td>0,0075</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>0,011</td>
<td>0,014</td>
</tr>
<tr>
<td></td>
<td>97,5</td>
<td>0,021</td>
<td>0,025</td>
</tr>
<tr>
<td></td>
<td>(N_f)</td>
<td>11</td>
<td>110</td>
</tr>
<tr>
<td>Женский (F)</td>
<td>2,5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>85</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>97,5</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(N_f)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Таблица А.4 — Значение \(s(f_j) \), в децибелах, для формулы (A.1)

<table>
<thead>
<tr>
<th>Пол</th>
<th>(s(f_j)) и (N_f)</th>
<th>Возраст, лет</th>
<th>Частота, Гц</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3,15</td>
<td>4</td>
</tr>
<tr>
<td>Мужской (M)</td>
<td>(s(f_j))</td>
<td>5,75</td>
<td>5,35</td>
</tr>
<tr>
<td></td>
<td>(N_f)</td>
<td>11</td>
<td>110</td>
</tr>
<tr>
<td>Женский (F)</td>
<td>(s(f_j))</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>(N_f)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Оценка изменений порогов вибратактильной чувствительности

В.1 Применение в клинической медицине

Интерес к оценке чувствительности к вибрации в качестве средства неврологической диагностики наблюдался в течение ста последних лет. Еще первые исследователи отмечали снижение вибратактильной чувствительности (т.е. уменьшение порогов вибратактильной чувствительности) в случае болезни Паркинсона. Позднее измерение вибратактильной чувствительности было предложено как средство обнаружения различных периферических невропатий, генерализованных или локальных, связанных с заболеваниями волокон химических или физических факторов. Данный метод применяют для диагностики кератического туннельного синдрома, радиального туннельного синдрома, хронических расстройств сухожилий трахеоматического характера, ульбовых невропатий, полиневропатий, а также при осмотрах рабочих, чья профессиональная деятельность связана с постоянным воздействием локальной вибрации. С этой целью определяют пороги вибратактильной чувствительности на разных частотах воздействия (или эквивалентных частотах) и на их основе вычисляют показатель чувствительности или строят тактограмму, облегчающие интерпретирование полученных результатов.

При развитии какого-либо патологического процесса имеет смысл проводить повторные измерения относительных смещений порогов на тех же частотах, той же аппаратуру и тем же методом. В этом случае систематическая ошибка, связываясь с методом и применяемым оборудованием, нивелируется, и результат теста определяется только состоянием объекта. В литературе отмечено использование измерений относительного смещения порога для оценки тяжести заболеваний больных диабетом, пациентов, проходящих гемодиализ, онкологических больных после проведения химиотерапии, а также для рабочих, подвергающихся нейротоксическому воздействию химической или физической природы. Кроме того, изменения относительного смещения порога были использованы в мониторинге восстановительного процесса нервной проводимости и реабилитации функции руки.

Была доказана также правомерность измерения порогов вибратактильной чувствительности в качестве объективного теста в клинической медицине. Документально установлена корреляция результатов, полученных методами, основанными на измерениях порогов вибратактильной чувствительности, и другими способами оценки состояния периферической нервной системы, в частности, нервной проводимости.

Отсутствие в прошлом стандартизированного метода оценки порогов вибратактильной чувствительности, равно как и нормативных значений этой характеристики, ограничивало широту применения данной техники в клинической практике. Стандартизация настоящего метода, связанных порогов вибратактильной чувствительности на заданных частотах возбуждения или эквивалентных частотах с разными популяциями механорецепторов, позволило получить больше информации о тактильной дисфункции. Применение этой информации рассмотрено в настоящем приложении.

В.2 Физиология тактильного восприятия и смещения порога

Тактильные способности кисти руки определяются нервной активностью до четырех популяций специализированных нервных окончаний, локализованных в кончиках пальцев. Обычно популяции механорецепторов классифицируют по их восприятию кожного прогиба и по протяженности рецепторных полей. Пороги вибратактильной чувствительности для трех популяций механорецепторов могут быть определены в соответствии с ГОСТ 13091-1. Четвертая популяция механорецепторов, на которую не распространяется ГОСТ 13091-1, реагирует на растяжение кожи покровов.

Тремя популяциями механорецепторов на кончиках пальцев рук, для которых могут быть получены значения порогов вибратактильной чувствительности, являются: медленноадаптирующиеся рецепторы типа I (SAI), которые анатомически коррелируют с дисками Меркеля, быстроадаптирующиеся механорецепторы типа II (FAI), которые анатомически коррелируют с тельцами Мейсгера, и быстроадаптирующиеся механорецепторы типа II (FAII), которые анатомически коррелируют с тельцами Пачини. Активность SAI проявляется преимущественно, в восприятии пространственных свойств поверхности (ребристость и текстура). В противоположность этому активность FAI и FAII проявляется в виде информации о движении поверхности, контактирующей с кожей. Нельзя, однако, быть уверенным, что при захвате предметов пальцами руки важную роль играют ощущения микроскопических смещений объекта, на которые реагируют, в основном, FAI, поэтому качество захвата определяется в первую очередь, тактильной чувствительностью, а не нервно-мышечными функциями.

Таким образом, следует ожидать, что изменения порогов вибратактильной чувствительности для SAI, FAI и FAII могут повлиять на тактильные функции руки и создать сложности в удержании объектов и манипулировании ими. Изменения в клинической практике указанные изменения могут являться проявлением патологии. Смещение порогов на разных частотах позволяют обнаружить характерные отклонения, которые легко всего наблюдать.
с помощью тактограммы. На рисунке В.1 изображены тактограммы для двух пальцев рук двух разных субъектов. Для каждого случая показаны референтные смещения порогов.

![Смещение порога, дБ](image)

Рисунок В.1 — Тактограммы референтного смещения порога на пальцах двух операторов цепных пил

Из этих примеров видно, что на частотах возбуждения одной и той же популяции механорецепторов (например, на частотах 20 и 31,5 Гц) наблюдаются одинаковые смещения порогов. Как видно по одной из тактограмм рисунка В.1, образованной закрашенными квадратиками, для некоторых пальцев эти смещения близки по величине для всех популяций механорецепторов, однако для других пальцев смещения порогов для разных популяций механорецепторов могут быть разными. Так на тактограмме рисунка В.1, образованной закрашенными кружочками, видно, что эти смещения приблизительно одинаковы для SAI и FAI, но существенно возрастают для FAII. Указанные смещения для разных популяций механорецепторов следует считать статистически значимым.

Характерные смещения порогов дают информацию о природе изменений сенсорной чувствительности или повреждения нерва и указывают на изменения во всем нерве (тактограмма рисунка В.1, образованная квадратиками) или только в одной или двух рецепторных популяциях (тактограмма рисунка В.1, образованная кружочками). В последнем случае можно предположить выборочные периферические поражения нервных волокон или рецепторов.

В.3 Корреляция между результатами исследований порогов вибротактильной чувствительности, нервной проводимости и общими клиническими тестами

Известен ряд работ по исследованию больных с жалобами на руки, выполненных для оценки эффективности разных клинических тестов. В одной из таких работ было проведено одновременное исследование вибротактильной чувствительности и нервной проводимости. Неврологические симптомы были обнаружены у 98 % рабочих верфи, использующих ручные инструменты. В этой группе пороги вибротактильной чувствительности на 120 Гц были одинаково повышены по сравнению с группой работников ручного труда, состоящей из здоровых субъектов, что хорошо согласовывалось с выявленными изменениями по результатам лабораторных тестов на нервную проводимость.

В другой работе в ходе независимых исследований для групп пациентов исследовалась взаимосвязь между порогами вибротактильной чувствительности, измеренными для 1-го и 5-го пальцев каждой руки (см. 5.5, примечание 2), результатами традиционного неврологического обследования предплечий и кистей рук, включая вибрационную чувствительность (камертон), болевую чувствительность (укол иглой) и проприорецепторную чувствительность (положение суставов), и нервной проводимостью. Была обнаружена сильная корреляция между заключениями, сделанными на основе измерений порогов вибротактильной чувствительности, с данными, полученными с помощью камертон, для одних и тех же пальцев рук (статистический коэффициент значимости $p < 0,001$), статистически значимая — с данными по тестам проприорецепции ($p < 0,01$) и более слабая — с дан-
ными теста на болевую чувствительность (р < 0.05). Корреляция не зависела от того, какими нервами, срединными или локтевыми, иннервированы пальцы.

Использование измерений порогов вибромоторной чувствительности как вспомогательного средства диагностики при туннельном синдроме дает противоречивые результаты. По крайней мере, частично это можно объяснить несовершенством используемой аппаратуры, которая не удовлетворяла требованиям ИСО 13091-1. Но более существенным является то, что наличие или отсутствие корреляции очень сильно зависит от использованных нормативных значений порогов вибромоторной чувствительности, а также от используемых диагностических критериев.

Выявленная недостаточная корреляция между результатами, полученными на основе измерений порогов вибромоторной чувствительности, и результатами других тестов для группы субъектов не может служить причиной для беспокойства, поскольку один тест может обнаружить физиологические или патологические изменения до того, как они будут определены другими тестами. На рисунке B.2 приведен пример тактограммы испытуемого с нормальной нервной проводимостью и неопределенной дисфункцией руки. Во время компьютерного тестирования у сорокадвухлетнего бывшего рабочего верфи (специальность — шлифовщиков) с жалобами на боли в локте и трудностями координации движений было выявлено статистически достоверное референтное смещение порогов для SAI и FAI обеих рук и его отсутствие для FAII. Тесты на нервную проводимость неврологических изменений не выявили, более того, следует отметить, что смещения порогов для 3-го (светлые квадраты на рисунке B.2) и 5-го (темные квадраты на рисунке B.2) пальцев каждой руки были почти одинаковы, и характер этого смещения для обеих рук был одним и тем же.

Рисунок B.2 — Тактограммы референтного смещения порога на пальцах левой руки рабочего верфи

B.4 Корреляция между смещениями порогов вибромоторной чувствительности и функциями руки

Определение порогов вибромоторной чувствительности обеспечивает количественную оценку состояния соматосенсорного пути, по которому информация от вибромоторных рецепторов поступает в мозг. По своей функциональной значимости этот путь является важным для тактильного распознавания объекта и, как часть соматосенсорной петли, для манипулирования объектом и его контроля.

Взаимосвязь между значениями порогов вибромоторной чувствительности на кончиках пальцев рук и симптомами снижения способности совершать движения пальцами руки установлена по результатам ответов на вопросы, предложенные в анкете группе рабочих ручного труда. В этом исследовании определялись пороги вибромоторной чувствительности для SAI, FAI и FAII в соответствии с ИСО 13091-1. Для рабочих, утвердительно ответивших на вопрос анкеты о нечувствительности (онемении) пальцев и наличии трудностей в защеплении пуговиц на одежду, были отмечены статистически значимые референтные смещения порогов для SAI и/или FAII. Наиболее убедительным образом прогнозировать смещение порогов можно было для группы лиц с жалобами на труднос-
ГОСТ Р ИСО 13091-2—2008

ti манипулирования мелкими предметами и застегиванием пуговиц. В этом случае прогностическая ценность положительных результатов составила от 90 % до 100 %, а отрицательных результатов — от 0 % до 2,8 %.

Изучалась также возможность раннего обнаружения относительного и референтного смещений порогов с целью предотвращения развития функциональной недостаточности в случае ухудшающейся чувствительности или с целью восстановления функции поврежденных нервов в случае повышающейся чувствительности. Была подвергнута исследованию группа рабочих ручного труда (операторы легких ценных пил), из которых 30 % на начало исследований имели симптомы изменения нейросенсорной или нервно-мышечной функции. Результаты измерений порогов вибротактильной чувствительности были сопоставлены с результатами функциональных тестов (хват кистью руки, сила кисти и предплечья) и симптомами, выявленными во время физических осмотров за пятилетний период. Статистически значимое референтное смещение порогов было выявлено у 3 % членов группы на первом осмотре и у 14 % спустя 5 лет. Статистически значимое относительное смещение порога ($p < 0,01$) было зафиксировано у большинства рабочих через 5 лет работы, в то время как симптомы, обнаруживаемые другими методами, отсутствовали.

V.5 Резкое смещение порогов и превышающие нарушения функции руки

В ряде случаев может иметь место резкое (т. е. кратковременное) референтное или относительное смещение порогов (например, потеря чувствительности при воздействии локальной вибрации). Из лабораторных экспериментов известно, что на биомеханический контроль положения предплечья и кисти руки влияет воздействие на руку вибрации, что приводит к временной потере способности к управлению объектом или его удержанию. Вибрация влияет также на точность выполняемых рукой движений.

Для операторов вибрирующих ручных машин выявлена взаимосвязь между временем относительным смещением порога, интенсивностью вибрационного воздействия и выраженностью неврологических симптомов вибрационной болезни. Таким образом, в течение рабочего дня существует возможность резких изменений порога вибротактильной чувствительности, что препятствует выполнению рабочих операций и повышает риск возникновения травмы вследствие потери управления вибрирующим инструментом. В ходе проведенных лабораторных исследований, однако, не удалось установить количественную связь между воздействием вибрации и нарушением функций руки. Для более детального анализа необходимо принимать во внимание, на какую популяцию механорецепторов воздействует вибрация и каким смещениям порогов это соответствует.
Сведения о соответствии национальных стандартов Российской Федерации ссылочным международным стандартам

Таблица С.1

<table>
<thead>
<tr>
<th>Обозначение ссылочного международного стандарта</th>
<th>Обозначение и наименование соответствующего национального стандарта</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИСО 2041:1990</td>
<td>ГОСТ 24348—80 Вибрация. Термины и определения</td>
</tr>
<tr>
<td>ИСО 5605:1997</td>
<td>*</td>
</tr>
<tr>
<td>ИСО 13091-1:2001</td>
<td>ГОСТ ИСО 13091-1—2008 Вибрация. Пороги вибrotактильной чувствительности для оценки нервных дисфункций. Часть 1. Методы измерений на кончиках пальцев рук</td>
</tr>
</tbody>
</table>

* Соответствующий национальный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.
ГОСТ Р ИСО 13091-2—2008

Библиография

[36] Wild P., Massin N., Lasfargues G., Baudin V., Unlu D. and Donati P. Vibrotactile perception thresholds in four non-exposed populations of working age (submitted for publication)
Ключевые слова: вибрация, виброметрическая чувствительность, порог виброметрической чувствительности, смещение порога, измерения, оценка, нервные дисфункции