ЭЛЕКТРОАГРЕГАТЫ ГЕНЕРАТОРНЫЕ ПЕРЕМЕННОГО ТОКА С ПРИВОДОМ ОТ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Часть 2

Двигатели внутреннего сгорания

ISO 8528-2:2005
Reciprocating internal combustion engine driven alternating current generating sets — Part 2: Engines (IDT)

Издание официальное
ГОСТ Р ИСО 8528-2—2007

Предисловие

Цели и принципы стандартизации в Российской Федерации установлены Федеральным законом от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании», а правила применения национальных стандартов Российской Федерации — ГОСТ Р 1.0—2004 «Стандартизация в Российской Федерации. Основные положения»

Сведения о стандарте

1 ПОДГОТОВЛЕН Федеральным государственным унитарным предприятием Всероссийский научно-исследовательский институт стандартизации и сертификации в машиностроении (ВНИИМАШ) и открытым акционерным обществом (ОАО) «НИИЭлектроагрегат» на основе аутентичного перевода стандарта, указанного в пункте 4

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 47 «Передвижная энергетика»

3 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Приказом Федерального агентства по техническому регулированию и метрологии от 31 октября 2007 г. № 300-ст

Наименование настоящего стандарта изменено относительно наименования указанного международного стандарта для приведения в соответствие с ГОСТ Р 1.5—2004 (подраздел 3.5).

При применении настоящего стандарта рекомендуется использовать вместо ссылочных международных стандартов соответствующие им национальные стандарты, сведения о которых приведены в дополнительном приложении A

5 ВВЕДЕН ВПЕРВЫЕ

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе «Национальные стандарты», а текст изменений и поправок — в ежемесячно издаваемых информационных указателях «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячно издаваемом информационном указателе «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

© Стандартинформ, 2008

Настоящий стандарт не может быть частично или полностью воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Федерального агентства по техническому регулированию и метрологии
Содержание

1 Область применения ... 1
2 Нормативные ссылки ... 1
3 Обозначения, термины и определения .. 1
 3.1 Обозначения ... 1
 3.2 Термины и определения .. 2
4 Дополнительные требования .. 5
5 Общие характеристики ... 5
 5.1 Характеристики мощности .. 5
 5.2 Основные характеристики двигателя внутреннего сгорания 6
 5.3 Режим частичной нагрузки .. 6
6 Характеристики частоты вращения .. 6
 6.1 Общие требования ... 6
 6.2 Типы регуляторов частоты вращения, используемых в электроагрегатах .. 6
 6.3 Применение регуляторов частоты вращения 7
7 Прием нагрузки двигателем внутреннего сгорания 7
 7.1 Общие требования ... 7
 7.2 Двигатель без турбораддува .. 7
 7.3 Двигатель с турбораддувом .. 7
8 Колебания и шум .. 8
 8.1 Крутильные колебания ... 8
 8.2 Линейные колебания .. 8
 8.3 Шум ... 8
9 Тепловой баланс .. 8
10 Впускная и выпуская система .. 8
11 Условия пуска .. 8
12 Топливо, смазочные материалы и охладитель 8
13 Значения показателей системы регулирования 9
Приложение А (справочное) Сведения о соответствии ссылочных международных стандартов национальным стандартам .. 10
ГОСТ Р ИСО 8528-2—2007

Введение

Настоящий стандарт входит в комплекс стандартов ГОСТ Р ИСО 8528 «Электроагрегаты генераторного переменного тока с приводом от двигателя внутреннего сгорания», включающий в себя следующие части:

часть 1 — Применение, технические характеристики и параметры;
часть 2 — Двигатели внутреннего сгорания;
часть 3 — Генераторы переменного тока;
часть 4 — Устройства управления и аппаратура коммутационная;
часть 5 — Электроагрегаты;
часть 6 — Методы испытаний;
часть 7 — Технические данные для описания и расчета;
часть 8 — Электроагрегаты малой мощности. Технические требования и методы испытаний;
часть 9 — Измерение и оценка механической вибрации
часть 10 — Измерение воздушного шума методом огибающей поверхности;
часть 11 — Динамические системы непрерывного электроснабжения;
часть 12 — Аварийные источники питания для служб обеспечения безопасности.
ГОСТ Р ИСО 8528-2—2007

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЭЛЕКТРОАГРЕГАТЫ ГЕНЕРАТОРНЫЕ ПЕРЕМЕННОГО ТОКА
С ПРИВОДОМ ОТ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Часть 2

Двигатели внутреннего сгорания

Reciprocating internal combustion engine

Driven alternating current generating sets. Part 2. Internal combustion engines

Дата введения — 2009—01—01

1 Область применения

Настоящий стандарт распространяется на двигатели внутреннего сгорания, предназначенные для привода генераторов переменного тока в электроагрегатах, применяемых на суше и на море.

Настоящий стандарт не распространяется на двигатели внутреннего сгорания электроагрегатов, используемых в авиации и для приведения в движение наземных транспортных средств и локомотивов.

Требования настоящего стандарта являются приоритетными при предъявлении дополнительных требований к электроагрегатам, например, используемым для обеспечения электроэнергией больниц, высотных зданий и других объектов.

В настоящем стандарте приведены обозначения, термины и определения частоты вращения двигателей внутреннего сгорания, которые используются для привода генераторов переменного тока.

Некоторые положения настоящего стандарта могут быть использованы для электроагрегатов с другими типами первичных двигателей, например паровыми двигателями.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ИСО 3046-1:2002 Поршневые двигатели внутреннего сгорания. Характеристики. Часть 1. Стандартные условия и объявленные мощность, расход топлива и смазочного масла

ИСО 3046-4:1978 Поршневые двигатели внутреннего сгорания. Характеристики. Часть 4. Регулирование частоты вращения

ИСО 3046-5:2001 Поршневые двигатели внутреннего сгорания. Характеристики. Часть 5. Крутильные колебания

ИСО 8528-1:2000 Генераторные электроагрегаты переменного тока с поршневыми двигателями внутреннего сгорания. Часть 1. Применение, номинальные значения и рабочие характеристики

ИСО 8528-5:2005 Генераторные электроагрегаты переменного тока с поршневыми двигателями внутреннего сгорания. Часть 5. Генераторы

3 Обозначения, термины и определения

3.1 Обозначения

В настоящем стандарте применены следующие обозначения:

$ n $ — частота вращения двигателя внутреннего сгорания (engine speed), мин$^{-1}$;

$ n_r $ — номинальная частота вращения (declared speed), мин$^{-1}$;

$ n_{fd} $ — частота вращения при пуске (firing speed), мин$^{-1}$;

$ n_{max} $ — максимальная допустимая частота вращения (maximum permissible speed), мин$^{-1}$;

$ n_{pl} $ — частота вращения при частичной нагрузке (partial-load speed), мин$^{-1}$;

Издание официальное
ГОСТ Р ИСО 8528-2—2007

\(n_{i,r} \) — частота вращения на холостом ходу (declared no-load speed), мин\(^{-1}\);
\(n_{i,\min} \) — минимальная устойчивая частота вращения на холостом ходу (lowest adjustable no-load speed), мин\(^{-1}\);
\(n_{i,\max} \) — максимальная устойчивая частота вращения на холостом ходу (highest adjustable no-load speed, in revolutions per minute), мин\(^{-1}\);
\(n_{d,s} \) — частота настройки устройства ограничения частоты вращения (setting speed of overspeed limiting devices), мин\(^{-1}\);
\(n_{d,o} \) — частота срабатывания устройства ограничения частоты вращения (operating speed of overspeed limiting devices), мин\(^{-1}\);
\(\Delta n_s \) — относительный диапазон установки частоты вращения (related range of speed setting), %;
\(\Delta n_{s,do} \) — диапазон установки частоты вращения (range of speed setting), мин\(^{-1}\);
\(\Delta n_{s,do} \) — нижний диапазон установки частоты вращения (downward range of speed setting), мин\(^{-1}\);
\(\Delta n_{s,up} \) — верхний диапазон установки частоты вращения (upward range of speed setting), мин\(^{-1}\);
\(\Delta n_{s,up} \) — относительный верхний диапазон установки частоты вращения (related upward range of speed setting), %;
\(\nu_{n} \) — скорость изменения уставки частоты вращения (rate of change of speed setting), с\(^{-1}\);
\(\alpha_{s,t} \) — наклон регуляторной характеристики (speed droop), %;
\(\Delta \alpha_{s,t} \) — отклонение характеристики скорость/мощность (speed/power characteristic deviation), %;
\(P \) — мощность двигателя (engine power), кВт;
\(P_a \) — фактическая мощность двигателя (actual engine power), кВт;
\(P_r \) — номинальная мощность двигателя (declared engine power), кВт;
\(t_r \) — время срабатывания (response time), с;
\(p_{me} \) — среднее эффективное давление (brake mean effective pressure), кПа;
\(V_{st} \) — объем цилиндра двигателя (swept volume of the engine), см\(^3\).

3.2 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями:

3.2.1 Номинальная частота вращения \(n_r \): Частота вращения при номинальной мощности, соответствующая номинальному значению частоты вращения электроагрегата.

3.2.2 Частота вращения при пуске \(n_{p} \): Частота вращения, которую необходимо обеспечить с помощью внешнего источника энергии, независимо от системы подачи топлива, чтобы двигатель начал работать от состояния покоя в режиме самоподдерживающегося вращения.

3.2.3 Максимальная допустимая частота вращения \(n_{\text{max}} \): Частота вращения двигателя ниже предельного значения, установленного изготовителем для обеспечения безопасности (см. примечание 1 и рисунок 3).

3.2.4 Частота вращения при частотной нагрузке \(n_a \): Установившаяся частота вращения двигателя \(a \) при работе двигателя, % номинальной мощности

\[
a = 100 \frac{P_a}{P_r}.
\]

Например, при 45 % мощности \(a = 45 \) (см. рисунок 2).

Для \(a = 45 \)

\[
n_a = n_{i,r} = \frac{P_a}{P_r} (n_{i,r} - n_r) = n_{i,r} - 0,45(n_{i,r} - n_r).
\]

Соответствующие значения номинальной частоты вращения и частоты вращения при частичной нагрузке определяют при неизменной установке частоты вращения.

3.2.5 Частота вращения на холостом ходу \(n_{i} \): Частота вращения двигателя без нагрузки при установке частоты вращения, аналогичной номинальной частоте вращения \(n_r \).

3.2.6 Минимальная устойчивая частота вращения на холостом ходу \(n_{\text{min}} \): Минимальная частота вращения на холостом ходу, которую можно установить с помощью регулятора.

3.2.7 Максимальная устойчивая частота вращения на холостом ходу \(n_{\text{max}} \): Максимальная частота вращения на холостом ходу, которую можно установить с помощью регулятора.

3.2.8 Частота настройки устройства ограничения частоты вращения \(n_{d,s} \): Частота вращения двигателя, при которой начинает работать устройство ограничения частоты вращения (см. рисунок 3).
3.2.9 частота срабатывания устройства ограничения частоты вращения \(n_{d, cr} \) — Частота вращения двигателя, при которой для заданной частоты настройки происходит срабатывание ограничителя частоты вращения (см. примечание 2 и рисунок 3).

3.2.10 относительный диапазон уставки частоты вращения \(\Delta n_s \) — Диапазон уставки частоты вращения, выраженной в процентах номинальной частоты вращения

\[
\Delta n_s = \frac{n_{i, max} - n_{i, min}}{n_r} \times 100.
\]

3.2.11 диапазон уставки частоты вращения \(\Delta n_s \) — Диапазон между максимальной и минимальной частотами вращения на холостом ходу

\[
\Delta n_s = n_{i, max} - n_{i, min}.
\]

3.2.12 нижний диапазон уставки частоты вращения \(\Delta n_{s, do} \) — Диапазон между частотой вращения на холостом ходу и минимальной устойчивой частотой вращения

\[
\Delta n_{s, do} = n_{i, r} - n_{i, min}.
\]

3.2.13 относительный нижний диапазон уставки частоты вращения \(\Delta n_{s, do} \) — Нижний диапазон уставки частоты вращения, выраженный в процентах номинальной частоты вращения

\[
\Delta n_{s, do} = \frac{n_{i, r} - n_{i, min}}{n_r} \times 100.
\]

3.2.14 верхний диапазон уставки частоты вращения \(\Delta n_{s, up} \) — Диапазон между максимальной устойчивой частотой вращения на холостом ходу и частотой вращения на холостом ходу

\[
\Delta n_{s, up} = n_{i, max} - n_{i, r}.
\]

3.2.15 относительный верхний диапазон уставки частоты вращения \(\Delta n_{s, up} \) — Верхний диапазон уставки частоты вращения, выраженный в процентах номинальной частоты вращения

\[
\Delta n_{s, up} = \frac{n_{i, max} - n_{i, r}}{n_r} \times 100.
\]

3.2.16 темп изменения уставки частоты вращения \(v_{n} \) — Скорость изменения уставки частоты вращения при дистанционном управлении, выраженная в процентах относительного диапазона уставки частоты вращения в секунду

\[
v_{n} = \frac{(n_{i, max} - n_{i, min}) n_r}{t} \times 100.
\]

3.2.17 диапазон настройки — Диапазон частоты вращения, в котором может быть установлена частота настройки устройства ограничения частоты вращения.

П р и м е ч а н и я
1 Предельная частота вращения — максимальная расчетная частота вращения, которую двигатель может поддерживать без риска получить повреждение.
2 Для конкретного двигателя частота срабатывания зависит от полной инерции электроагрегата и конструкции системы защиты от превышения допустимой частоты вращения.
3 100 кПа = 1 бар.

3.2.18 наклон регуляторной характеристики \(\Delta n_{s} \) — Разность между номинальной частотой вращения на холостом ходу и номинальной частотой вращения при номинальной мощности для фиксированной уставки частоты вращения (см. рисунок 1), выражаемая в процентах номинальной частоты вращения

\[
\Delta n_{s} = \frac{n_{i, r} - n_{i, min}}{n_r} \times 100.
\]

3.2.19 отклонение характеристики частоты вращения/мощность \(\Delta n_{s} \) — Максимальное отклонение от линейной характеристики кривой частоты вращения/мощность в диапазоне мощностей от холостого хода до номинального значения, выраженного в процентах номинальной частоты вращения (см. рисунок 2).

3.2.20 характеристика зависимости частота вращения/мощность — Кривая значений установившейся частоты вращения в диапазоне мощностей от холостого хода до номинального значения в зависимости от нагрузки двигателя внутреннего сгорания (см. рисунки 1 и 2).
ГОСТ Р ИСО 8528-2—2007

3.2.21 время срабатывания tₚ: Период времени между моментами начала работы устройства ограничения частоты вращения и срабатыванием двигателя внутреннего сгорания.

Рисунок 1 — Диапазон уставки частоты вращения

Рисунок 2 — Отклонение характеристики частота вращения/мощность от линейного графика
4 Дополнительные требования

4.1 Двигатели внутреннего сгорания, предназначенные для привода генераторов переменного тока на борту судов и в прибрежных сооружениях, должны соответствовать дополнительным требованиям, которые должны быть установлены по согласованию между изготовителем и заказчиком.

Для электроагрегатов переменного тока, предназначенных для работы с нестандартным оборудованием, дополнительные требования в каждом случае должны быть согласованы между изготовителем и заказчиком.

4.2 При необходимости выполнения особых требований любых других органов (например, органов инспекции или законодательных) заказчик должен указать данный орган до размещения заказа.

Другие дополнительные требования должны быть согласованы между изготовителем и заказчиком.

5 Общие характеристики

5.1 Характеристики мощности

5.1.1 Общие требования

Мощность на валу двигателя внутреннего сгорания (тормозная мощность — по определению ИСО 3046-1) необходимо выбирать с учетом:

а) электрической мощности, указанной заказчиком;

б) электрической мощности, потребляемой независимым вспомогательным оборудованием (см. ИСО 3046-1);

в) потерь электрической мощности в генераторе переменного тока.

Также необходимо учитывать взвешенное изменение мощности вследствие появления дополнительной нагрузки, например при пуске электродвигателя, которое влияет на выходные характеристики двигателя внутреннего сгорания и генератора переменного тока.

Изготовитель должен учитывать особенности подключаемой нагрузки и располагать информацией о возможных вариантах подключения нагрузок у заказчика (потребителя).
ГОСТ Р ИСО 8528-2—2007

5.1.2 Мощность
Мощность двигателя внутреннего сгорания должна быть указана изготовителем двигателя в соответствии с требованиями ИСО 3046-1.

5.1.3 Эксплуатационная мощность
Эксплуатационную мощность двигателя внутреннего сгорания определяют в соответствии с требованиями ИСО 3046-1 с учетом фактических условий эксплуатации электроагрегата (см. ИСО 8528-1), особенностей его применения, номинальной мощности электроагрегата и мощности, потребляемой любым существенным независимым вспомогательным оборудованием (см. ИСО 3046-1).
Для обеспечения гарантированного бесперебойного энергоснабжения потребителей необходимо, чтобы при подключении всех одновременно работающих нагрузок фактическая мощность двигателя не превышала значения эксплуатационной мощности. Двигатель внутреннего сгорания должен обладать дополнительной мощностью для обеспечения его работы при переходных процессах. Не допускается использовать для этого мощность перегрузки по ИСО 3046-1.

5.2 Основные характеристики двигателя внутреннего сгорания
Изготовитель двигателя должен сообщить изготовителю электроагрегатов следующие основные характеристики двигателя:
а) номинальную мощность по ИСО 3046-1 и условия эксплуатации;
б) номинальную частоту вращения;
в) расходы топлива и смазочного масла при нормальных условиях эксплуатации по ИСО 3046-1.
Основные характеристики, устанавливаемые изготовителем двигателя, должны быть достаточными для того, чтобы изготовитель электроагрегата и его заказчик могли сделать вывод о возможности применения двигателя в соответствующих условиях.
Для оценки возможности работы двигателя в условиях эксплуатации электроагрегата (в частности, при набросе нагрузки) необходимо вычислить среднее эффективное давление \(p_{me} \), кПа, которое необходимо для цилиндров двигателя при работе электроагрегата с номинальными мощностью и частотой по формуле
\[
p_{me} = \frac{Kp}{V_n n_r},
\]
где \(K = 1,2 \cdot 10^5 \) для четырехтактного двигателя и \(0,6 \cdot 10^5 \) — для двухтактного.

5.3 Режим частичной нагрузки
Заказчик должен быть уведомлен о том, что продолжительная работа двигателя с частичной нагрузкой влияет на его надежность и ресурс.
Изготовитель двигателя должен сообщить изготовителю электроагрегата минимальную нагрузку, при которой допускается длительная работа двигателя без существенных ухудшений.
При необходимости работы электроагрегата с нагрузками, меньшими минимального значения, изготовитель двигателя должен принять решение о возможности работы двигателя с такими нагрузками и, если необходимо, дать рекомендации и предложить соответствующие меры, которые должны быть приняты.

6 Характеристики частоты вращения

6.1 Общие требования
Выбор системы управления двигателем внутреннего сгорания должен основываться на установленных и переходных характеристиках частоты вращения, указанных заказчиком. Изготовитель электроагрегата должен гарантировать, что система управления, согласованная с изготовителем двигателя, соответствует заявленным требованиям.

Примечание 4 — Общие требования к регуляторам частоты вращения и устройствам защиты от превышения частоты вращения установлены в ИСО 3046-4.
Обозначения, термины и определения характеристик частоты вращения приведены в разделе 3.

6.2 Типы регуляторов частоты вращения, используемых в электроагрегатах
6.2.1 Пропорциональный (Р) регулятор
Пропорциональным регулятором является такой регулятор частоты вращения, у которого корректирующее воздействие управляющего сигнала пропорционально изменению частоты вращения. Изменение электрической нагрузки приводит к изменению частоты вращения двигателя внутреннего сгорания.
6.2.2 Пропорционально-интегральный (PI) регулятор
Пропорционально-интегральным регулятором является такой пропорциональный регулятор, у которого корректирующее воздействие управляющего сигнала на двигатель внутреннего сгорания зависит также от изменения частоты вращения вследствие изменения нагрузки двигателя, обусловленного изменением электрической нагрузки генератора переменного тока. Изменение частоты вращения осуществляют по интегральному действию.

При использовании этого типа регулятора изменение электрической нагрузки, как правило, не приводит к изменению частоты вращения.

Для обеспечения возможности параллельной работы электроагрегатов пропорционально-интегральный регулятор должен также работать как пропорциональный регулятор, если не предусмотрено дополнительное управление распределением нагрузки.

6.2.3 Пропорционально-интегрально-дифференциальный (PID) регулятор
Пропорционально-интегрально-дифференциальным регулятором является такой пропорционально-интегральный регулятор, у которого воздействие управляющего сигнала зависит от скорости изменения частоты вращения (дифференцирующее действие). При использовании этого типа регуляторов изменение электрической нагрузки не приводит к изменению частоты вращения.

Для обеспечения возможности параллельной работы электроагрегатов пропорционально-интегрально-дифференциальный регулятор должен также работать как пропорциональный регулятор, если не предусмотрено дополнительное управление распределением нагрузки.

6.3 Применение регуляторов частоты вращения
6.3.1 Общие требования
Общие требования к применению регуляторов частоты вращения приведены в ИСО 8528-1.

6.3.2 Одноначная работа
В зависимости от требований к регулированию, обусловленных применением электроагрегата, допускается использовать P, PI и PID регуляторы.

6.3.3 Параллельная работа
6.3.3.1 Регуляторы используются для электроагрегатов классов применения G1 и G2 (см. ИСО 8528-1, раздел 7).

6.3.3.2 PI регуляторы используются для электроагрегатов классов применения G1—G4. Если данный регулятор будет использоваться в изохронном режиме, то необходимо установить дополнительное устройство распределения нагрузки.

6.3.3.3 PID регуляторы используются также как регулятор PI для электроагрегатов классов применения G1—G4, но с улучшенной переходной характеристикой. Если данный регулятор будет использоваться в изохронном режиме, то необходимо установить дополнительное устройство распределения нагрузки.

7 Прием нагрузки двигателем внутреннего сгорания
7.1 Общие требования
Режим приема нагрузки двигателем внутреннего сгорания главным образом зависит от типа системы подачи воздуха в зону горения (см. ИСО 8528-1, подраздел 14.2).

Изготовитель электроагрегатов должен учитывать используемый режим приема нагрузки двигателем внутреннего сгорания и генератором (см. рисунки 6 и 7 ИСО 8528-5).

7.2 Двигатель без турбонаддува
В двигатель без турбонаддува воздух поступает без наддува (естественное всасывание) или нагнетается под давлением с помощью компрессора с механическим приводом. Максимальный наброс нагрузки для такого двигателя должен быть равен его эксплуатационной мощности.

7.3 Двигатель с турбонаддувом
В двигателе с турбонаддувом воздух нагнетается под давлением турбонагнетателем, приводимым в движение выхлопными газами. Для таких двигателей значение набрасываемой нагрузки определяют по среднему эффективному давлению p_{me} соответствующей тормозной мощности.
8 Колебания и шум

8.1 Крутильные колебания
Двигатель внутреннего сгорания создает крутильные колебания во всей системе валов электроагрегата. Требования к крутильным колебаниям двигателей внутреннего сгорания установлены в ИСО 3046-5.
Изготовитель двигателей должен предоставить изготовителю электроагрегатов необходимую информацию, которая позволит обеспечить их надежную эксплуатацию. При расчете крутильных колебаний электроагрегат должен рассматриваться в целом (см. ИСО 8528-5).

8.2 Линейные колебания
Двигатель внутреннего сгорания создает линейные колебания, которые действуют как структурные колебания на корпус, основание, муфту и генератор переменного тока.
При необходимости изготовитель двигателя должен сообщить изготовителю электроагрегата характеристики линейных колебаний. При расчете линейных колебаний электроагрегат следует рассматривать в целом (см. ИСО 8528-5).

8.3 Шум
По запросу изготовителя электроагрегата изготовитель двигателя внутреннего сгорания должен сообщить характеристики шума (см. ИСО 8528-5).

9 Тепловой баланс
Изготовитель двигателя внутреннего сгорания должен предоставить изготовителю электроагрегата следующие характеристики теплового баланса (для местных условий):
- температуру охлаждения двигателя внутреннего сгорания, скорость потока, а также температуру охладителя (масла, воздуха);
- температуру выхлопных газов, скорость их потока;
- рассеивание, путем излучения тепла.

10 Впускная и выпускная системы
Изготовитель двигателя внутреннего сгорания должен предоставить изготовителю электроагрегата необходимые данные по составам воздуха и выхлопных газов.
Изготовитель электроагрегата должен учитывать ограничения по потерям давления, установленные изготовителем двигателя внутреннего сгорания:
а) в трубах, отверстиях, устройствах открытия или фильтрации системы воздухообогревания двигателя внутреннего сгорания;
б) в трубах, глушителях и др. для выхлопных газов.

11 Условия пуска
Если пуск двигателя внутреннего сгорания должен проводиться при специфических условиях, установленных заказчиком электроагрегата или изготовителем (например, при низкой температуре окружающей среды), изготовитель двигателя внутреннего сгорания должен предоставить изготовителю электроагрегата данные, характеризующие пуск двигателя при указанных условиях, и рекомендации по использованию дополнительных средств, которые допускается использовать.

12 Топливо, смазочные материалы и охлаждитель
При необходимости изготовитель электроагрегата должен согласовать с изготовителем двигателя внутреннего сгорания характеристики топлива, смазки и охлаждения, которые будут использоваться в процессе эксплуатации электроагрегата.
Изготовитель двигателя внутреннего сгорания должен предоставить изготовителю электроагрегата технические данные рекомендуемых топлива, смазочных материалов и охлаждителя.
Особое значение имеют следующие характеристики топлива:
а) плотность (кг/м³);
b) вязкость (Н·с/м²);
c) теплопроводная способность (кДж/);
d) цетановое число;
ed) содержание ванадиевых, натриевых, кварцевых и алюминиевых оксидов (%);
f) для высоковязкого топлива — содержание серы (%).

13 Значения показателей системы регулирования

Значения показателей системы регулирования приведены в таблице.

Таблица — Значения показателей системы регулирования

<table>
<thead>
<tr>
<th>Показатель</th>
<th>Обозначение</th>
<th>Единица измерения</th>
<th>Значение для класса применения электродвигателя</th>
</tr>
</thead>
<tbody>
<tr>
<td>Относительный нижний</td>
<td>$\delta n_{sl, do}$</td>
<td>%</td>
<td>$-(2,5 + \delta n_{sl, l})$</td>
</tr>
<tr>
<td>диапазон уставки частоты</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>вращения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Относительный верхний</td>
<td>$\delta n_{sl, up}$</td>
<td>%</td>
<td>$+2,5$</td>
</tr>
<tr>
<td>диапазон уставки частоты</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>вращения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Скорость изменения уставки</td>
<td>v_o</td>
<td>c</td>
<td>От 0,2 до 1</td>
</tr>
<tr>
<td>частоты вращения</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Наклон характеристики</td>
<td>$\delta n_{sl, l}$</td>
<td>%</td>
<td>Не более 8</td>
</tr>
<tr>
<td>регулятора</td>
<td></td>
<td></td>
<td>Не более 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Не более 3</td>
</tr>
</tbody>
</table>

1) СИП — по согласованию между изготовителем и потребителем.
Сведения о соответствии ссылочных международных стандартов национальным стандартам

Сведения о соответствии ссылочных международных стандартов национальным стандартам приведены в таблице A.1

Таблица A.1

<table>
<thead>
<tr>
<th>Обозначение ссылочного международного стандарта</th>
<th>Обозначение и наименование соответствующего национального стандарта</th>
</tr>
</thead>
<tbody>
<tr>
<td>ИСО 3046-1: 2002</td>
<td>ГОСТ Р 52517—2005 (ИСО 3046-1—2002) Двигатели внутреннего сгорания поршневые. Характеристики. Часть 1. Стандартные исходные условия, объявленные мощность, расходы топлива и смазочного масла. Методы испытаний</td>
</tr>
<tr>
<td>ИСО 3046-4:1978</td>
<td>*</td>
</tr>
<tr>
<td>ИСО 3046-5:2001</td>
<td>ГОСТ Р ИСО 3046-5—2004 Двигатели внутреннего сгорания поршневые. Характеристики. Часть 5. Крутильные колебания</td>
</tr>
<tr>
<td>ИСО 8528-1:2000</td>
<td>ГОСТ Р ИСО 8528-1—2005 Электроагрегаты генераторные переменного тока с приводом от двигателя внутреннего сгорания. Часть 1. Применение, технические характеристики и параметры</td>
</tr>
<tr>
<td>ИСО 8528-5:2005</td>
<td>ГОСТ Р ИСО 8528-5—2005 Электроагрегаты генераторные переменного тока с приводом от двигателя внутреннего сгорания. Часть 5. Электроагрегаты</td>
</tr>
</tbody>
</table>

* Соответствующий национальный стандарт отсутствует. Оригинал международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.
Ключевые слова: двигатель внутреннего сгорания, мощность, частота вращения, характеристики, топливо, тепловой баланс